Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 5 chưa học số nguyên tố đâu em nhé!
Câu hỏi của Nguyễn Anh Kim Hân - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
do a; a + k; a + 2k là số nguyên > 3
=> a; a + k; a + 2k lẻ
=> 2a + k chẵn
=> k chia hết cho 2
mặt khác a là số nguyên
=> a có dạng 3p + 1 và 3p + 2 (p thuộc N*)
xét a = 3p + 1, ta có k dạng:
3m; 3m + 1; 3m + 2 (m thuộc N*)
+) với k = 3m + 1 ta có: 3p + 1 + 2(3m + 1) = 3(p + 1 + 3m) (loại vì a + 2k là hợp số)
+) với k = 3m + 2 ta có: a + k = 3(p + m + 1) (loại)
=> k = 3m
tương tự với 3p + 2:
=> k = 3m
=> k chia hết cho 3
mà (3; 2) = 1
=> k chia hết cho 6
a) Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
b) \(A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(A.B=\frac{1.\left(3.5...99\right).\left(2.4.6...100\right)}{\left(2.4.6...100\right).\left(3.5.7...99\right).101}=\frac{1}{101}\)
c) vì A < b nên A . A < A . B < \(\frac{1}{101}< \frac{1}{100}\)
do đó : A . A < \(\frac{1}{10}.\frac{1}{10}\)suy ra A < \(\frac{1}{10}\)
Với a>b:
a=b+m(m số tự nhiên bất kì.
b+m phần b bằng 1 cộng m phần b.
Mà m phần b lớn hơn 0 nên nó lớn hơn 1.
Với ngược lại chứng minh tương tự thôi.
Chúc em học tốt^^
Với a>b:
a=b+m(m số tự nhiên bất kì.
b+m phần b bằng 1 cộng m phần b.
Mà m phần b lớn hơn 0 nên nó lớn hơn 1.
Với ngược lại chứng minh tương tự thôi.
Chúc em học tốt^^
a>b =>2a>2b =>-2a<-2b =>3-2a<3-2b. Mà 3-2b<4-2b. Vậy 3-2a<4-2b (tính chất bắc cầu).
Ta có \(a>b\Rightarrow2a>2b\Rightarrow-2a<-2b\)
Mà \(3<4\)
Do đó \(3-2a<4-2b\)
Đặt \(A=a\times2015+b\)
\(B=n\times2015+b\)
\(\Rightarrow A-B=\left(a\times2015+b\right)-\left(n\times2015+b\right)=\left(a-n\right)\times2015\)chia hết cho 2015.