Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x+\frac{1}{3},b=y+\frac{1}{3},c=z+\frac{1}{3}\)
\(\Rightarrow a+b+c=x+y+z+1=1\Rightarrow x+y+z=0\)
Ta có \(a^2+b^2+c^2=\left(x+\frac{1}{3}\right)^2+\left(y+\frac{1}{3}\right)^2+\left(z+\frac{1}{3}\right)^2=\left(x^2+y^2+z^2\right)+\frac{2}{3}\left(x+y+z\right)+\frac{1}{3}\)
\(=\left(x^2+y^2+z^2\right)+\frac{1}{3}\ge\frac{1}{3}\)
Dấu "=" xảy ra khi x = y = z = 0 => a = b = c = 1/3
Thay 1=\(\frac{a^2+b^2+c^2}{3}\)vào va rút gọn ta được
VT= \(\frac{4}{3}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3}\left(\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{a}\right)+\frac{1}{3}\left(a+b+c\right)\)(1)
Áp dụng \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(bunhiacopxky\right)\) ta được
(1) \(\ge\frac{4}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\left(a+b+c\right)=2\left(a+b+c\right).\)
Dấu'=' khi a=b=c
mình quỳ bạn luôn Nhân Thiên Hoàng ạ kiệt lên mạng hỏi mà mày lại bảo vậy thì thua luôn
Ta có a3_ a2b +ab2 _6b3=0
<=> (a3 - 2a2 b) + (a2 b - 2ab2) + (3ab2 - 6b3) = 0
<=> (a - 2b)(a2 + ab + 3b2) = 0
Vì a >b>0 nên (a2 + ab + 3b2) >0
=> a - 2b = 0 <=> a = 2b
Thế vào B=a4- 4b4 /b4 -4a4 = \(\frac{-4}{21}\)
Chia hai vế của giải thiết cho \(b^3\),ta có:
\(\frac{a^3}{b^3}-\frac{a^2}{b^2}+\frac{a}{b}-6=0\) Đặt \(\frac{a}{b}=v\) (v nguyên)
Suy ra \(v^3-v^2+v-6=0\) (1)
Giải (1),tìm được v = 2 tức là \(\frac{a}{b}=2\)
Thay vào B,ta có: \(B=\frac{\frac{a^{\text{4 }}}{b^4}.b^4-4b^4}{b^4-4.\frac{a^4}{b^4}.b^4}=\frac{b^4\left(2^4-4\right)}{b^4\left(1-4.2^4\right)}\)\(=\frac{12}{-63}=-\frac{4}{21}\)
Cách 1:
Ta có: \(VT-VP\ge\frac{\left(a+b+c\right)^2}{3}-\left(a+b+c\right)=\left(a+b+c\right)\left(\frac{a+b+c-3}{3}\right)\ge0\) (do \(a+b+c\ge3\sqrt[3]{abc}=3\))
Đẳng thức xảy ra khi a = b = c = 1.
Cách 2:Đổi biến" \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)
Cách 3: Dùng P,Q,R
Đặt \(\left\{{}\begin{matrix}p=a+b+c\ge3\left(\text{vì abc = 1}\right)\\q=ab+bc+ca\ge3\left(\text{vì abc = 1, theo Cô si}\right)\\r=abc=1\end{matrix}\right.\)
Quy về: Cho \(p,q\ge3;r=1\). Chứng minh:
\(p^2-2q\ge p\). Ta biết rằng \(2q=2\left(ab+bc+ca\right)\le\frac{2}{3}\left(a+b+c\right)^2=\frac{2}{3}p^2\)
Do đó \(p^2-2q\ge\frac{1}{3}p^2\). Cần chứng minh \(\frac{1}{3}p^2\ge p\Leftrightarrow p\left(\frac{p-3}{3}\right)\ge0\) (đúng do p >= 3)
Vậy ta có đpcm.
P/s: đúng ko ta?