Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy trong tam giác tổng độ dài hai cạnh luôn lớn hơn cạnh còn lại
Ta có: \(a+b>c\)
\(\Rightarrow\left(a+b\right)^2>c^2\)
\(\Rightarrow c\left(a+b\right)^2>c^3\)
Tương tự:
\(a\left(b+c\right)^2>a^3\)
\(b\left(a+c\right)^2>b^3\)
do đó \(a\left(b+c\right)^2+b\left(a+c\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\left(ĐPCM\right)\)
Ta có:
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3\)
\(=\left[a\left(b-c\right)^2-a^3\right]+\left[b\left(c-a\right)^2-b^3\right]+\left[c\left(a+b\right)^2-c^3\right]\)
\(=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)
\(=a\left(b-c-a\right)\left(b-c+a\right)+b\left(c-a-b\right)\left(c-a+b\right)+c\left(a+b-c\right)\left(a+b+c\right)\)
\(=a\left(b-c-a\right)\left(b-c+a\right)-b\left(c-a-b\right)\left(a+b-c\right)+c\left(a+b-c\right)\left(a+b+c\right)\)
\(=\left(a+b-c\right)\left[a\left(b-c-a\right)-b\left(c-a+b\right)+c\left(a+b+c\right)\right]\)
\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2+ca+cb+c^2\right)\)
\(=\left(a+b-c\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a+b-c\right)\left[c^2-\left(a^2-2ab+b^2\right)\right]\)
\(=\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]\)
\(=\left(a+b-c\right)\left(c-a+b\right)\left(c+a-b\right)\)
vì a, b, c là cạnh của 1 tam giác
\(\Rightarrow\hept{\begin{cases}a+b-c>0\\c-a+b>0\\c+a-b>0\end{cases}}\)
\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3>0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)\(\left(đpcm\right)\)
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
Ta có a < b + c
=> 2a < a + b + c = 2
=> a < 1
Tương tự b < 1, c < 1
Từ đó ta có (1 - a)(1 - b)(1 - c) > 0
<=> -abc + ab + bc + ca - a - b - c + 1 > 0
<=> abc < ab + bc + ca - 1
<=> 2abc < 2(ab + bc + ca) - 2
a2 + b2 + c2 + 2abc < a2 + b2 + c2 + 2(ab + bc + ca) - 2 = (a + b + c)2 - 2 = 2
BĐT tam giác:a<b+c>>>a^2<ab+ac
Tương tự,b^2<ba+bc,c^2<ca+cb
>>>>a^2+b^2+c^2<2(ab+bc+ca)(đpcm)
Theo bđt tam giác có:
\(\hept{\begin{cases}a< b+c\Rightarrow a^2< ab+ac\\b< a+c\Rightarrow b^2< ab+bc\\c< a+b\Rightarrow c^2< ac+bc\end{cases}}\)\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)