K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

p thiếu đề

24 tháng 8 2016

ko đủ đề

8 tháng 7 2019

\(\frac{a+1}{b+1}>\frac{a}{b}\)

8 tháng 7 2019

Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\), ta đi so sánh hai số \(a\left(b+1\right)\)và \(b\left(a+1\right)\).

Xét hiệu:

           \(a\left(b+1\right)-b\left(a+1\right)=ab+a-\left(ab+b\right)=a-b\)

Ta có 3 trường hợp, với điều kiện b > 0:

Trường hợp 1: Nếu \(a-b=0\Leftrightarrow a=b\)thì:

\(a\left(b+1\right)-b\left(a+1\right)=0\Leftrightarrow a\left(b+1\right)=b\left(a+1\right)\)

\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}=\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}=\frac{a+1}{b+1}\)

Trường hợp 2: Nếu \(a-b< 0\Leftrightarrow a< b\)thì:

\(a\left(b+1\right)-b\left(a+1\right)< 0\Leftrightarrow a\left(b+1\right)< b\left(a+1\right)\)

\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}< \frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Trường hợp 3: Nếu \(a-b>0\Leftrightarrow a>b\)thì:

\(a\left(b+1\right)-b\left(a+1\right)>0\Leftrightarrow a\left(b+1\right)>b\left(a+1\right)\)

\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}>\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\)

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

\(a>b\Rightarrow a+2016>b+2016\)

\(\Rightarrow\frac{a}{b}=\frac{b+a-b}{b}\)

\(\Rightarrow\frac{a+2016}{b+2016}=\frac{b+2016+a+2016-b+2016}{b+2016}=\frac{b+a-a}{b+2016}\)

Vì: \(\frac{b+a-a}{b}>\frac{b+a-b}{b+2016}\)

\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)

7 tháng 7 2016

Ta có:

  • \(\frac{a}{b}=\frac{a\left(b+2016\right)}{b\left(b+2016\right)}\)

               \(=\frac{ab+2016a}{b\left(b+2016\right)}\)

  • \(\frac{a+2016}{b+2016}=\frac{b\left(a+2016\right)}{b\left(b+2016\right)}\)

                             \(=\frac{ab+2016b}{b\left(b+2016\right)}\)

Vì \(a>b\Rightarrow2016a>2016b\)

\(\Rightarrow ab+2016a>ab+2016b\)

\(\Rightarrow\frac{ab+2016a}{b\left(b+2016\right)}>\frac{ab+2016b}{b\left(b+2016\right)}\)

\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)

9 tháng 8 2017

Ta có: a(b + 2001) = ab + 2001a

         : b(a + 2001) = ab + 2001b

-Trường hợp 1: Nếu a > b \(\Rightarrow\)2001a > 2001b

  \(\Rightarrow\)ab + 2001a > ab + 2001b \(\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)

-Trường hợp 2: Nếu a < b, tương tự ta có: \(\frac{a}{b}< \frac{a+2001}{b+2001}\)

-Trường hợp 3: Nếu a = b \(\Rightarrow\)\(\frac{a}{b}=\frac{a+2001}{b+2001}\)

Chúc bạn học tốt ^^!

24 tháng 8 2016

+\(\frac{a}{b}=1\Leftrightarrow a=b\Leftrightarrow\frac{a}{b}=\frac{a+2016}{b+2016}\)

+\(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow\frac{a}{b}-1=\frac{a-b}{b}>\frac{a-b}{b+2016}=\frac{a+2016}{b+2016}-1\)=> \(\frac{a}{b}>\frac{a+2016}{b+2016}\)

+\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow1-\frac{a}{b}=\frac{b-a}{b}>\frac{b-a}{b+2016}=1-\frac{a+2016}{b+2016}\)=>\(\frac{a}{b}< \frac{a+2016}{b+2016}\)

24 tháng 8 2016

Ta có a/b-1=a-b/b ; a+2001/b+2001-1=a+2001-b-2001/b+2001=a-b/b+2001

Hai phân số trên cùng tử mà b+2001>b nên a-b/b+2001<a-b/b hay a+2001/b+2001<a/b

24 tháng 6 2017

\(\frac{a}{b}>\frac{a+2017}{b+2017}\)

21 tháng 8 2017

AI

K

CHO

MINH

VOI

CAM

ON

17 tháng 6 2015

Qui đồng mẫu số 2 phân số:

\(\frac{a}{b}=\frac{a.\left(b+1\right)}{b.\left(b+1\right)}=\frac{ab+a}{bb+b}\)

\(\frac{a+1}{b+1}=\frac{b\left(a+1\right)}{b\left(b+1\right)}=\frac{ab+b}{bb+b}\)

So sánh 2 phân số\(\frac{ab+a}{bb+b}\)\(\frac{ab+b}{bb+b}\)=> Ta so sánh ab+a và ab+b

TH1:\(\frac{a}{b}\)>1=>a>b

Vì ab=ab mà a>b

=>ab+a>ab+b

=>\(\frac{ab+a}{bb+b}>\frac{ab+b}{bb+b}\)

=>\(\frac{a}{b}>\frac{a+1}{b+1}\)

TH2:\(\frac{a}{b}\)<1=>a<b

Vì ab=ab mà a<b

=>ab+a<ab+b

=>\(\frac{ab+a}{bb+b}<\frac{ab+b}{bb+b}\)

\(\frac{a}{b}<\frac{a+1}{b+1}\)

17 tháng 6 2015

Hồ Thu Giang lâu vậy

17 tháng 7 2018

Ta có: 

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+2018}{b+2018}=\frac{b-a}{b+2018}\)

Do b+2018>b => \(\frac{b-a}{b}>\frac{b-a}{b+2018}\Rightarrow1-\frac{a}{b}>1-\frac{a+2018}{b+2018}\)\(\Rightarrow\frac{a}{b}< \frac{a+2018}{b+2018}\)