K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\ge0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\)

\(\Rightarrow Q.E.D\)

Dấu "=" xảy ra khi a=b

4 tháng 6 2019

\(gt\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=6\)

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)thì \(P=a^2+b^2+c^2\)và \(a+b+c+ab+bc+ca=6\)

Giải:

Ta có: \(x^2+1\ge2\sqrt{x^2\cdot1}=2x\)

Tương tự rồi cộng theo vế ta được: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1) 

Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2) 

Cộng (1), (2) theo vế ta được:

\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=2\cdot6=12\)

\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)

MinP = 3 khi a = b = c = 1 hay x = y = z = 1

4 tháng 6 2019

1. Theo Cô si:
\(\frac{1}{a^2}+\frac{1}{b^2}\ge2\sqrt{\frac{1}{a^2b^2}}=2\cdot\frac{1}{ab}=\frac{2}{ab}\)

Dấu "=" khi a = b

2.

\(gt\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

\(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)\rightarrow\left(x,y,z\right)\)\(\Rightarrow\left\{{}\begin{matrix}P=x^2+y^2+z^2\\x+y+z+xy+yz+zx=6\end{matrix}\right.\)

Theo Cô si ta có:

\(x^2+1\ge2\sqrt{x^2}=2x\)

Tương tự ta được: \(\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z\right)\)(1)

Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)

Cộng (1), (2) theo vế ta được:

\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)

\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)

Dấu "=" khi x = y = z = 1 hay a = b = c = 1

12 tháng 9 2017

ta có xy+yz+zx=0=> \(\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\Rightarrow a+b+c=0\)

ta xét \(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)+c^3-3ab-3abc\)

           \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=> \(a^3+b^3+c^3=3abc\) \(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

=> \(M=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)

=> M=3

11 tháng 2 2020

Cho a, b, c mà bắt chứng minh x, y, z nên ko chứng minh đc là đúng òi:)

\(VT-VP=\Sigma_{cyc}\frac{\left(x-y\right)^4}{4xy\left(x^2+y^2\right)}\ge0\)

a,b,c??? chỗ nào vậy bé ?? :)))

3 tháng 2 2020

\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)

\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)

4 tháng 2 2020

2/\(LHS\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{1+b+c}{3}+\frac{1+c+a}{3}+\frac{1+a+b}{3}}=\frac{3}{2}\)

8 tháng 2 2019

1,theo giả thiết => \(x^2+y^2+z^2=x+y+z\)

mà \(3\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)(bunhiacopxki)

=>\(x+y+z=< 3\)

ta có:\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}>=\frac{9}{x+y+z+6}=1\)(cauchy  schwarz)

8 tháng 2 2017

Câu hỏi của Ngô Hoàng Phúc - Toán lớp 10 | Học trực tuyến