Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
Ta có : \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{\left(x-3\right)\left(x+3\right)x}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x^2+6x+9-x^2}{x\left(x^2-3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{3\left(2x+3\right)}{x\left(x^2-3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{3x^2+9x}{x\left(x^2-3\right)}\)(mk sợ mk làm sai lắm nếu làm sai thì sory nhá)
Bài 5 :
a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)
=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
=> \(36x+3=0\)
=> \(x=-\frac{1}{12}\)
Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)
b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)
=> \(35x-5+60x-96+6x=0\)
=> \(101x-101=0\)
=> \(x=1\)
Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)
=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)
=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)
=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
=> \(-64x+123=0\)
=> \(x=\frac{123}{64}\)
Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)
A=(\(\frac{x^3-1}{x\left(x-1\right)}\)-\(\frac{x^3-1}{x\left(x+1\right)}\)) : \(\frac{2\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\)ĐKXĐ: x\(\ne\) -1, 1
A=\(\frac{1}{x\left(x+1\right)}\)x \(\frac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-1\right)}\)
A=\(\frac{1}{2x^2-2x}\)
B=\(\frac{x+1}{x-2}\)-\(\frac{2x}{x+2}\)-\(\frac{2+5x}{x^2-4}\)ĐKXĐ : x\(\ne\)2, -2
B=\(\frac{x+1}{x-2_{ }}\)-\(\frac{2x}{x+2}\)-\(\frac{2+5x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{x^2+3x+2}{\left(x-2\right)\left(x+2\right)}\)-\(\frac{2x^2-4x}{\left(x-2\right)\left(x+2\right)}\)-\(\frac{2+5x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x^2+2x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x}{x+2}\)