Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1
cho b=a+1
\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)
\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)
\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)
vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)
Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k! ^_^ *_*
Dễ chứng minh được với 1 số chính phương khi chia cho 7 ta chỉ có các khả năng dư: 0 , 1 , 2 , 4
Khi đó \(a^2+b^2\) chia 7 sẽ có các khả năng dư sau: 0 ; 1 ; 2 ; 3 ; 4 ; 6 ; 7
Mà theo đề bài \(a^2+b^2\) chia hết cho 7 nên sẽ chỉ duy nhất 1 khả năng là \(\hept{\begin{cases}a^2⋮7\\b^2⋮7\end{cases}}\)
Vì 7 là số nguyên tố => a và b đều chia hết cho 7
=> đpcm
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24
Ta có : \(A=7+7^2+7^3+...+7^{4k}\)
\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)
\(=\left(7+7^2+7^3+7^4\right)\left(1+...+7^{4k-4}\right)\)
\(=2800\left(1+...+7^{4k-4}\right)\)
\(=350.8\left(1+...+7^{4k-4}\right)⋮8\)
\(\Rightarrow A⋮8\left(1\right)\)
Ta lại có : \(A=7+7^2+7^3+...+7^{4k}\)
\(\Rightarrow7A=7^2+7^3+7^4+...+7^{4k+1}\)
\(\Rightarrow7A-A=\left(7^2+7^3+7^4+...+7^{4k+1}\right)-\left(7+7^2+7^3+....+7^{4k}\right)\)
hay \(6A=7^{4k+1}-7=7\left(7^{4k}-1\right)\)
Vì \(7\equiv2\left(mod5\right)\)\(\Rightarrow7^{4k}\equiv2^{4k}=16^k\left(mod5\right)\)
mà \(16\equiv1\left(mod5\right)\)\(\Rightarrow16^k\equiv1^k=1\left(mod5\right)\)
\(\Rightarrow7^{4k}\equiv1\left(mod5\right)\)
\(\Rightarrow7^{4k}-1⋮5\left(\cdot\right)\)
\(\Rightarrow7\left(7^{4k}-1\right)⋮5\)
\(\Rightarrow6A⋮5\)
Nhưng \(\left(6;5\right)=1\)
\(\Rightarrow A⋮5\left(2\right)\)
Ta lại có tiếp : \(7\equiv1\left(mod2\right)\)
\(\Rightarrow7^{4k}\equiv1^{4k}=1\left(mod2\right)\)
\(\Rightarrow7^{4k}-1⋮2\left(\cdot\cdot\right)\)
Từ \(\left(\cdot\right)\), \(\left(\cdot\cdot\right)\) và \(\left(2;5\right)=1\): \(\Rightarrow7^{4k}-1⋮10\)
\(\Rightarrow7\left(7^{4k}-1\right)⋮10\)
\(\Rightarrow6A⋮10\)
Nhưng \(\left(6;10\right)=1\)
\(\Rightarrow A⋮10\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)và \(\left(5;8;10\right)=1\)
\(\Rightarrow A⋮400\left(đpcm\right)\)
Câu 2 nè:
Ta có:2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}\)
\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{58}=\frac{A}{B}\)(trong đó B ko chia hết 59)
\(\Rightarrow S=\frac{A}{B}+\frac{1}{59}=\frac{\left(59A+B\right)}{59B}=\frac{p}{q}\)
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt \(\frac{1}{50}+\frac{1}{52}+...+\frac{1}{58}=\frac{C}{D}\) ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
=>đpcm
nếu đề có thêm điều kiện n nhỏ nhất thì làm như vậy còn ko thì chỉ chép đến chỗ dấu "'*" thui
nơi bài 2 là Cho p là số nguyên tố > 7 nha