K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

Ta có: 

\(M=a^2+b^2-3ab\) \(=\left(a+b\right)^2-2ab-3ab\) \(=\left(a+b\right)^2-5ab\)

\(N=\left(a-b\right)^2\) \(=\left(a+b\right)^2-4ab\)

Thay \(a+b=-5\);  \(ab=6\) vào M và N, ta có:

\(M=\left(-5\right)^2-5.6\) \(=25-30=-5\)

\(N=\left(-5\right)^2-4.6\) \(=25-24=1\)

 

26 tháng 9 2017

Ta có :

M = 2( a3 + b3 ) - 3( a2 + b2 ) 

    = 2( a + b ) ( a2 - ab + b2 ) - 3( a2 + b2 ) 

    = 2( a2 - ab + b2 ) - 3 ( a2 + b

   = 2a2 - 2ab + 2b2 - 3a2 - 3b2 

   = -a2 - 2ab - b2 

   = - ( a + b )2

   = -1 

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

28 tháng 12 2015

M=1 ( chtt ) có đó vô mà tham khảo 

18 tháng 9 2016

Ta có

a^3+b^3+3ab(a^2+b^2)+6ab(a+b)=a^3+b^3+3ab.a^2+3ab.b^2+6ab=a^3+b^3+3(a^2)b+3(b^2)a+3a(b-1)b^2+3b(a-1)a^2+6ab

                                               =(a+b)^3+3ab((b-1).b+(a-1).a)+6ab=(a+b)^3+3ab((1-b).(-b)+(1-a)(-a))+6ab=(a+b)^3+3ab(-2ab)+6ab

                                                                                                                                                        =(a+b)^3+(-6ab)ab+6ab

=>(a+b)^3+6ab(-ab-1)=6ab(-ab-1)+1 Vậy M=6ab(-ab-1)+1

k cho mình nhá

1 tháng 11 2024

a2 + b2 = 5

13 tháng 7 2018

Bài 2  : 

a)    C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )

<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1

<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1 

Đặt t = n2 + 5n + 5

Suy ra : C = ( t - 1 ).( t + 1 ) + 1

         => C = t2 - 1 + 1

       <=> C = t2    hay C = ( n2 + 5n + 5 )2

Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương 

                                                                             ( đpcm )

b)     E = n2 + ( n + 1 )2 + n( n + 1 )2

 <=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2

 <=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2

 <=> E = [ n( n + 1 ) + 1 ]2

 <=> E = ( n2 + n + 1 )2

Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương

                                                                        ( đpcm )

15 tháng 12 2017

Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)

\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)

Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong

19 tháng 6 2021

@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu