K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

14 tháng 7 2018

Đề câu d đúng mà!

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị...
Đọc tiếp

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0

Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........

Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........

Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......

Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị của biểu thức x2 + \(\frac{1}{x^2}\)là.......

Câu 6: Cho x, y là các số khác 0 thỏa mãn x2 - 2xy + 2y2 - 2x + 6y + 5 = 0

Giá trị của biểu thức P = \(\frac{3x^2y-1}{4xy}\) là........

Câu 7: Một hình thang cân có góc ở đáy bằng 450, cạnh bên bằng 2cm, đáy lớn bằng 3cm. Độ dài đường trung bình của hình thang là..........

Câu 8: Biến đổi biểu thức \(\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) với x \(\ne\) 2 ta được phân thức .................

1
3 tháng 1 2017

trôi hết đề : Câu 7

\(\left(3-\sqrt{2}\right)\)

câu 8:

\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)

Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)

30 tháng 10 2020

1. THực hiện phép tính

a) \(12x^2y\left(-\frac{1}{6}xy^2\right)+2x^2y^2\left(xy-2\right)\)

= \(-2x^3y^3+2x^3y^3-4x^2y^2\)

= \(-4x^2y^2\)

b) \(\left(35x^3y^3-14x^3y^4\right):\left(-7x^2y\right)\)

= \(35x^3y^3:\left(-7x^2y\right)+\left(-14x^3y^4\right):\left(-7x^2y\right)\)

= \(-5xy^2+2xy^3\)

6 tháng 6 2015

1) x2-4x+5+y2+2y=0

<=>x2-4x+4+y2+2y+1=0

<=>(x-2)2+(x+1)2=0

<=>x-2=0 và x+1=0

<=>x=2    và x=-1

2)2p.p2-(p3-1)+(p+3)2p2-3p5 

<=>2p3-p3+1+2p3+6p2-3p5

<=>3p3+6p2-3p5+1

3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1

                                     =1

4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3

                                           =-18x2+3(đề sai)

 b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x

                                                    =16

Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x

5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0

b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0

6)M+(12x4-15x2y+2xy2+7)=0

<=>M                              =-(12x4-15x2y+2xy2+7)

<=>M                              =-12x4+15x2y-2xy2-7