K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

Đáp án A

Gọi d là đường thẳng cách đều 2 điểm A; B  ta có:

M( x; y) nằm trên d  khi và chỉ khi

MA2= MB2

hay (x-2) 2+ (y-3) 2= (x-1) 2+ (y-4) 2

Suy ra:

2x- 2y + 4= 0

-> x- y +2= 0

NV
3 tháng 4 2020

Bạn viết pt 3 đường trung bình của tam giác ABC ra là được thôi

6 tháng 4 2020

Vì A, B, C không nằm trên cùng một đường thằng, nên đường thẳng cách đều 3 điểm A. B, C là 3 đường trung bình của tam giác ABC

Gọi D, E, F lần lượt là trung điểm của AB, BC và CA, ta có: \(D\left(6;3\right)\); \(E\left(\frac{9}{2};5\right)\); \(F\left(-\frac{3}{2};3\right)\)

Gọi \(d_1,d_2,d_3\) là 3 đường thằng cần tìm. VTCP của \(\overrightarrow{u_{d_1}};\overrightarrow{u_{d_2}};\overrightarrow{u_{d_3}}\) lần lượt là \(\overrightarrow{BC};\overrightarrow{CA};\overrightarrow{AB}\)

\(d_1:\left\{{}\begin{matrix}QuaD\\VTCP\overrightarrow{u_1}\end{matrix}\right.\)

\(d_2:\left\{{}\begin{matrix}QuaE\\VTCP\overrightarrow{u_2}\end{matrix}\right.\)

\(d_3:\left\{{}\begin{matrix}QuaF\\VTPT\overrightarrow{u_3}\end{matrix}\right.\)

Viết các phương trình tham số, kết luận.

NV
21 tháng 4 2020

\(\overrightarrow{AB}=\left(12;4\right)=4\left(3;1\right)\) ; \(\overrightarrow{AC}=\left(-3;4\right)\); \(\overrightarrow{BC}=\left(-15;0\right)=-15\left(1;0\right)\)

\(\Rightarrow\) Đáp án B là đáp án chính xác (vì có vtpt vuông góc với 1 trong 3 cạnh của tam giác, 3 đáp án còn lại ko vuông góc nên đều loại)

23 tháng 5 2020

Phương trình BC: 3x + 4y - 4 =0

=> d(A; BC) = \(\frac{\left|3.1+4.4-4\right|}{\sqrt{3^2+4^2}}\) = 3

=> Đáp án C

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Gọi \(\Delta \) là đường thẳng đi qua B và có vecto pháp tuyến là \(\overrightarrow n  = \left( {a;b} \right)\)

Vậy phương trình \(\Delta \) là: \(a\left( {x + 1} \right) + b\left( {y - 2} \right) = 0 \Leftrightarrow {\rm{a}}x + by + \left( {a - 2b} \right) = 0\)

Ta có: \(d\left( {A,\Delta } \right) = d\left( {C,\Delta } \right) \Leftrightarrow \frac{{\left| {3a + 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {4a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \left[ \begin{array}{l}3a + 2b = 4a - 3b\\3a + 2b =  - 4a + 3b\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 5b\left( 1 \right)\\7a = b\left( 2 \right)\end{array} \right.\)

Từ (1) ta có thể chọn được 1 vecto pháp tuyến là: \(\overrightarrow n  = \left( {5;1} \right)\). Vậy phương trình đường thẳng \(\Delta \)là: \(5x + y + 3 = 0\)

Từ (2) ta có thể chọn được 1 vecto pháp tuyến là: \(\overrightarrow n  = \left( {1;7} \right)\). Vậy phương trình đường thẳng \(\Delta \)là: \(x + 7y - 13 = 0\)