Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2010^{100}+2010^{99}\)
\(=2010^{99}\left(2010+1\right)\)
\(=2010^{99}.2011⋮2011\left(dpcm\right)\)
b) \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}.11⋮11\left(dpcm\right)\)
c) \(4^{13}+32^5-8^8\)
\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}.5⋮5\left(dpcm\right)\)
1) 3^1994+4^1993-3^1992
= 3^1992.(9+3-1)=3^1992.11 chia hết cho 11
=> 3^1994+3^1993-3^1992 chia hết cho 11
\(2010^{100}+2010^{99}=2010^{99}.\left(2010+1\right)=2010^{99}.2011\)chia hết cho 2011
a, 2010100+201099=201099(2010+1)=201099.2011 =>2010100+201099 chia hết cho 11
1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)
\(\dfrac{2010}{a}=1\Rightarrow a=2010\);
\(\dfrac{c}{2010}=1\Rightarrow c=2010\);
\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).
Vậy (a, b, c) = (2010; 2010; 2010)
3)
a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)
Có: \(\sqrt{x+24}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)
\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)
Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)
b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)
Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)
\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)
\(\Rightarrow2x+\dfrac{4}{13}=0\)
\(\Rightarrow2x=-\dfrac{4}{13}\)
\(\Rightarrow x=-\dfrac{2}{13}\)
Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)
4)
a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)
Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)
\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)
\(\Rightarrow x+\dfrac{5}{41}=0\)
\(\Rightarrow x=-\dfrac{5}{41}\)
Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)
b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)
Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)
\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)
\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\)
\(\Rightarrow x=\dfrac{2}{3}\)
Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)
a) \(2010^{100}\)+ \(2010^{99}\)
= \(2010^{99}\)\(\left(2010+1\right)\)
= \(2010^{99}\). \(2011\)chia hết cho 2011
Vậy ...................................
b) \(3^{1994}\)+ \(3^{1993}\)- \(3^{1992}\)
= \(3^{1992}\)\(\left(3^2+3-1\right)\)
= \(3^{1992}\). \(11\)
Vậy .......................
c) \(4^{13}\)+ \(32^5\)- \(8^8\)
= \(\left(2^2\right)^{13}\)+ \(\left(2^5\right)^5\)- \(\left(2^3\right)^8\)
= \(2^{26}\)- \(2^{25}\)- \(2^{24}\)
= \(2^{24}\). \(\left(2^2+2-1\right)\)
= \(2^{24}\). \(5\)
Vậy .......................
3 cau 3 nhe
a)
\(=2010^{99}\left(2010+1\right)\)
\(=2010^{99}.2011\)
cung thay chia het ro nhi
b)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}.11\)
cung thay chia het ro nhi
c)
\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}.5\)
cung thay chia het ro nhi
cho 3 nhe