Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠN THAM KHẢO CHUYÊN ĐỀ SỐ CHÍNH PHƯƠNG TRONG NÂNG CAO PHÁT TRIỂN 6
a) 26.6101 + 1
= 64.(...6) + 1
= (...4) + 1
= (...5) chia hết cho 5, là hợp số
b) Vì 2001.2002.2003.2004.2005 chia hết cho 5; 10 chia hết cho 5
nên 2001.2002.2003.2004.2005 - 10 chia hết cho 5, là hợp số
c) Ta thấy: 1991.1992.1993.1994 có tận cùng là 4
=> 1991.1992.1993.1994 + 1 có tận cùng là 5, chia hết cho 5, là hợp số
d) Ta có:
\(10\equiv1\left(mod3\right)\)
\(\Rightarrow10^{100}\equiv1\left(mod3\right)\) (1)
\(7\equiv1\left(mod3\right)\) (2)
Từ (1) và (2) \(\Rightarrow10^{100}-7⋮3\), là hợp số
e) Tổng các chữ số của 111...1 (2007 chữ số 1) là: 1 + 1 + 1 + ... + 1 = 2007 chia hết cho 3 (2007 số 1)
=> 111...11 (2007 c/s 1) chia hết cho 3, là hợp số
f) Ta có: 1111...1 (2006 c/s 1)
= 1111...1000...0 + 1111...1
(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)
= 1111...1.1000...0 + 1111...1
(1003 c/s 1)(1003 c/s 0)(1003 c/s 1)
= 1111...1.1000...01 chia hết cho 1111...1, là hợp số
(1003 c/s 1)(1002 c/s 0) (1003 c/s 1)
Mời bạn tham khảo các link sau:
a),b),c):https://hoidap247.com/cau-hoi/214111
d):https://olm.vn/hoi-dap/detail/78449788871.html
a) Do: 2002 chia hết cho 2 và số tận cùng của lũy thừa có cơ số là 2002 là 2 ; 4 ; 8 ; 6 => 20022003 cũng chia hết cho 2 (1)
Do: 2003 không chia hết cho 2 và số tận cùng của lũy thừa cơ số 2003 là 3 ; 9; 7 ; 1=> 20032004 không chia hết cho 2 (2)
Từ (1) và (2) ta được: 20022003 + 20032004 không chia hết cho 2
b) 34n - 6 = (34)n - 6 = 81n - 6
Do: Lũy thừa có cơ số là 81 thì có tận cùng là 1 => 81n đồng dư với 1 (mod 5) đồng thời 6 đồng dư với 1 (mod 5)
=>81n - 6 đồng dư với 1 - 1(mod 5) <=> 81n - 6 đồng dư với 0 (mod 5)
=> 81n - 6 chia hết cho 5 => 34n - 6 chia hết cho 5
c) 20012002 có tận cùng là 1 => 20012002 đồng dư với 1 (mod 10)
=> 20012002 - 1 đồng dư với 1 - 1 (mod 10) => 20012002 - 1 đồng dư với 0 (mod 10)
=> 20012002 - 1 chia hết cho 10