Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(\text{Đ}PCM\right)\)
Ta có : a/b = c/d => a/c = b/d
Áp dụng tính chất dãy tính chất tỉ số bằng nhau :
a/c = b/d = a+b/c+d = a-b/c-d => a+b/a-b = c+d/c-d
a, Gọi 3 cạnh của tam giác là a, b, c. Gọi chiều cao cần tìm là x ( thay a bằng x nhé)
Ta có:
4a/2 = 12b/2 = xc/2 = S (S là diện tích tam giác)
=> a = 2 ; b = 6 ; c = 2S /x
Do x - y < z < x + y (bất đẳng thức trong tam giác)
=> S/2 - S/6 < 2S/x < S/2 + S/6
=> 2S /6 < 2S /x < 2S/3 . Mà x thuộc Z
=> x = {4 ,5}
Bạn tham khảo ở đây nha
http://olm.vn/hoi-dap/question/222914.html
chứng minh rằng từ tỉ lệ thức a/b=c/d(a khác b, c khác d)ta có thể suy ra tỉ lệ thức a+b/a-b=c+d/c-d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(VT=\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(VP=\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) ->đpcm
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có :a/b = c/d suy ra a/c = b/d
áp dụng tính chất dãy tính chất tỉ số bằng nhau
a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d
y hệt bài bọn mk