K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

1) \(B=1+3+3^2+...+3^{1999}+3^{2000}\)

\(3B=3\cdot\left(1+3+3^2+...+3^{2000}\right)\)

\(3B=3+3^2+...+3^{2001}\)

\(3B-B=3+3^2+3^3+...+3^{2001}-1-3-3^2-...-3^{2000}\)

\(2B=3^{2001}-1\)

\(B=\dfrac{3^{2001}-1}{2}\)

2) \(C=1+4+4^2+...+4^{100}\)

\(4C=4\cdot\left(1+4+4^2+...+4^{100}\right)\)

\(4C=4+4^2+4^3+...+4^{101}\)

\(4C-C=4+4^2+4^3+...+4^{201}-1-4-4^2-....-4^{100}\)

\(3C=4^{101}-1\)

\(C=\dfrac{4^{101}-1}{3}\)

5 tháng 10 2023

Còn D bạn.

5 tháng 10 2019

Mẫu một câu thôi:D

Xét: \(7A=7+7^2+7^3+...+7^{2019}+7^{2020}\)

\(6A=7A-A=7^{2020}-1\Rightarrow A=\frac{7^{2020}-1}{6}\)

Vậy...

16 tháng 4 2017

B=3<1-12+13-14........+199-1100>

B=0

5 tháng 10 2019

Ko ghi lại đầu bài

7A= 7(1+7+7 mũ 2+7 mũ 3 +...+7 mũ 2019) { 2}

7A=7+7 mũ 1+ 7 mũ 2+ 7 mũ 3+7 mũ 4 +...+7 mũ 2020

7A-A= Lấy { 2 } trừ đầu bài

6A=7 mũ 2020 - 1

A= ( 7 mũ 2020 -1 ) : 6

tương tự với hai ý kia

#chúc bạn hok tốt

bạn nên xem lại ý c nha

5 tháng 10 2019

7A= 7+ 72+ 73+ ............+72019+72020

7A- 7= 72020- 1

6A= 72020-1

A= 72020-1:6

4B= 4+ 42+ 43+ ..........+ 42021

4B- B= 42021-1

3B= 42021-1

B= 42021-1: 3

BẠN THÔNG CẢM CÂU CUỐI MIK KO BÍT LÀM !!!!!

24 tháng 11 2017

a) \(A=2+2^2+2^3+2^4+.....+2^{98}+2^{99}\)

\(\Rightarrow2A=2^2+2^3+2^4+2^5.....+2^{99}+2^{100}\)

\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5.....+2^{99}+2^{100}\right)-\left(2+2^2+2^3+2^4+.....+2^{98}+2^{99}\right)\)

\(\Rightarrow A=2^{100}-2\)

b) \(B=2+2^4+2^7+......+2^{97}+2^{100}\)

\(\Rightarrow2^3B=2^4+2^7+......+2^{100}+2^{103}\)

\(\Rightarrow8.B-B=\left(2^4+2^7+......+2^{100}+2^{103}\right)-\left(2+2^4+2^7+......+2^{97}+2^{100}\right)\)

\(\Rightarrow7B=2^{103}-2\)

\(\Rightarrow B=\dfrac{2^{103}-2}{7}\)

20 tháng 12 2016

a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)

\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)

\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)

\(\Rightarrow6D=1-\frac{1}{7^{100}}\)

\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)