\(\frac{1}{\left|x-2\right|}\)>1}

tìm A∪B,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A=(-7/4; -1/2]

\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)

\(C=\left(\dfrac{2}{3};+\infty\right)\)

b: \(\left(A\cap B\right)\cap C=\varnothing\)

\(\left(A\cup C\right)\cap\left(B\A\right)\)

\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)

\(=\left(4;\dfrac{9}{2}\right)\)

NV
19 tháng 9 2019

\(\frac{1}{\left|x-2\right|}>2\Rightarrow\left|x-2\right|< \frac{1}{2}\Rightarrow-\frac{1}{2}< x-2< \frac{1}{2}\)

\(\Rightarrow\frac{3}{2}< x< \frac{5}{2}\)

\(\Rightarrow A=\left(\frac{3}{2};\frac{5}{2}\right)\)

\(\left|x-1\right|< 1\Rightarrow-1< x-1< 1\Rightarrow0< x< 2\)

\(\Rightarrow B=\left(0;2\right)\)

\(\Rightarrow A\cup B=\left(0;\frac{5}{2}\right)\)

\(A\backslash B=[2;\frac{5}{2})\)

28 tháng 9 2020

B= -2≤x ≤ 2 A= 0 <x< 2 A ∪ B = B A ∩ B = A ⇒ đáp án : -2 ≤ x ≤ 0 và x=2

Bài 3: 

a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)

b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)

c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)

d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)

13 tháng 2 2020

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)