K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

Bài 1 có phải là khai triển phép tính đúng ko

Bài 2 là rút gọn đúng ko

Bài 3 là tìm x đúng ko

1) a) (x-2)(x+3)=x2+3x-2x-6=x2+x-6 

    b) 4x2-(2x-1)2=(2x)2-(2x-1)2=(2x-2x+1)(2x+2x-1)=4x-1

2) a) 4x2-8x+4=4(x2-2x+1)=4(x-1)2

    b) x2+4x-4y2+4=(x2+4x+4)-4y2=(x+2)2-(2y)2=(x+2+2y)(x+2-2y)

Mình sửa bài 3a nha

5x(x-3)-x-3 =>5x(x-3)-x+3

3) a) 5x(x-3)-x+3=5x(x-3)-(x-3)=(x-3)(5x-1)=0

=>\(\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)

    b) 5x2-8x-4=(5x2-10x)+(2x-4)=5x(x-2)+2(x-2)=(x-2)(5x+2)=0

=>\(\orbr{\begin{cases}x+2=0\\5x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{2}{5}\end{cases}}}\)

Chúc bạn học tốt ! 

1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)

\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)

Vậy: S={0;-7;8;-1}

2) Ta có: \(x^3-8x^2+17x-10=0\)

\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)

\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)

Vậy: S={2;1;5}

3) Ta có: \(2x^3-5x^2-x+6=0\)

\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)

Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)

4) Ta có: \(4x^4-4x^2-3=0\)

\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)

\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)

\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)

\(2x^2+1>0\forall x\in R\)

nên \(2x^2-3=0\)

\(\Leftrightarrow2x^2=3\)

\(\Leftrightarrow x^2=\frac{3}{2}\)

hay \(x=\pm\sqrt{\frac{3}{2}}\)

Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)

QT
Quoc Tran Anh Le
Giáo viên
26 tháng 6 2019

a) \(x^3-5x^2+8x-4=0\)

\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy nghiệm của phương trình là: \(x=\left\{1;2\right\}\)

30 tháng 10 2022

b: =>2x^3+2x^2-3x^2-3x+6x+6=0

=>(x+1)(2x^2-3x+6)=0

=>x+1=0

=>x=-1

c: =>(x^2+x)^2+(x^2+x)-6=0

=>(x^2+x-2)=0

=>(x+2)(x-1)=0

=>x=1 hoặc x=-2

d: =>(x^2-4x-3)(x^2-4x-5)=0

=>(x-5)(x+1)(x^2-4x-3)=0

hay \(x\in\left\{2+\sqrt{7};2-\sqrt{7};5;-1\right\}\)

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

Thụy Lâm bn dừng lại ik ko mik sẽ nhờ thầy phynit giải quyết vụ này đấy

1 tháng 1 2020

Ví dụ cho bạn một bài, còn lại tương tự.

a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)

\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)

Vậy phương trình vô nghiệm.

1 tháng 1 2020

tth_new bạn làm hết ra đc ko. mình đọc không hiểu đc

24 tháng 2 2020

a, \(x\left(x-3\right)-x^2+2=0\)

\(\Leftrightarrow x^2-3x-x^2+2=0\\ \Leftrightarrow-3x+2=0\)

\(\Leftrightarrow-3x=-2\\ \Rightarrow x=\frac{2}{3}\)

b, \(x^2-2x+1=0\\ \Leftrightarrow\left(x-1\right)^2=0^2\)

\(\Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)

c, x(x-1)-(x+3)(x+4)=5x

\(\Leftrightarrow x^2-x-x^2-4x-3x-12=5x\)

\(\Leftrightarrow x^2-x-x^2-4x-3x-5x=12\\ \Leftrightarrow-13x=12\\ \Rightarrow x=\frac{-12}{13}\)

d, ko có vế phải ạ

e, \(x^2+2x=15\)

\(\Leftrightarrow\left(x^2+2x+1\right)-16=0\\ \Leftrightarrow\left(x+1\right)^2-4^2=0\)

\(\Leftrightarrow\left(x+1-4\right)\left(x+1+4\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

f, \(x^4-5x^3+4x^2=0\)

\(\Leftrightarrow x^4-x^3-4x^3+4x^2=0\\ \Leftrightarrow x^3\left(x-1\right)-4x^2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3-4x^2\right)=0\)

\(\Leftrightarrow\left(x-1\right).x^2\left(x-4\right)=0\)

\(\left[{}\begin{matrix}x^2=0\\x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=4\end{matrix}\right.\)

24 tháng 2 2020

chỗ câu c x+3.x+4 nha mn

3 tháng 6 2018

1.

a) \(\left\{4x-2\left(x-3\right)-3\left[x-3\left(4-2x\right)+8\right]\right\}.\left(-3x\right)\)

= \(\left[4x-2x+6-3\left(x-12+6x\right)+8\right].\left(-3x\right)\)

\(=\left(4x-2x+6-3x+36-18x+8\right).\left(-3x\right)\)

= \(\left(-19x+50\right).\left(-3x\right)\)

\(=57x^2-150x\)

b) \(5\left(3x^2+4y^3\right)+\left[9\left(2x^2-y^3\right)-2\left(x^2-5y^3\right)\right]\)

\(=15x^2+20y^3+\left(18x^2-9y^3-2x^2+10y^3\right)\)

\(=15x^2+20y^3+16x^2+y^3\)

\(=31x^2+21y^3\)

2.

a) \(5x\left(1-2x\right)-3x\left(x+18\right)=0\)

\(\Rightarrow5x-10x^2-3x^2-54x=0\)

\(\Rightarrow-49x-13x^2=0\)

\(\Rightarrow x\left(-49-13x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-49}{13}\end{matrix}\right.\)

b)

\(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)

\(\Rightarrow5x-3\left[4x-2\left(4x-15x+6\right)\right]=182\)

\(\Rightarrow5x-3\left(4x-8x+30x-12\right)=182\)

\(\Rightarrow5x-12x+24x-90x+36=182\)

\(\Rightarrow-73x-146=0\)

\(\Rightarrow x=-2\)

3 tháng 6 2018

cảm ơn bạnvui

16 tháng 7 2018

a)  \(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

b)  \(5x^2-5xy-3x+3y\)

\(=5x\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-3\right)\)

c)  \(x^2-2x-4y^2+1\)

\(=\left(x-1\right)^2-4y^2\)

\(=\left(x-2y-1\right)\left(x+2y-1\right)\)

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)