K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2015

1)a)x^2-x+1=x2-2.x.1/2+1/4 +3/4

=(x-1/2)2+3/4\(\ge\)3/4(vì (x-1/2)2\(\ge\)0)

dấu = xảy ra khi:

x-1/2=0

x=1/2

vậy GTNN của x^2-x+1 là 3/4 tại x=1/2

b)-x^2+x-y^2-4y-6

=(-x2+2x.1/2-1/4)+(-y2-4y-4)-7/4

=-(x2-2x.1/2+1/4)-(y2+4y+4)-7/4

=-(x-1/2)2-(y+2)2-7/4\(\le\)-7/4( vì -(x-1/2)2\(\le\)0;-(y+2)2\(\le\)0)

dấu = xảy ra khi:

x-1/2=0 và y+2=0

x=1/2 và y=-2

vậy GTLN của -x^2+x-y^2-4y-6 là -7/4 tại x=1/2 và y=-2

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

5 tháng 12 2016

a) A=5+16-(x^2+8x+16)=21-(x+4)^2

Amax=21 khi x=-4

b)B=(x^2-2x+1)+(y^2-4y+4)+2=(x-1)^2+(y-2)^2+2

Bmin=2 khi x=1; y=2

c)C=(x-1)(x+2)(x+3)(x+6)=(x^2+5x-6)(x^2+5x+6)=(x^2+5x)^2-36

Cmin =-36 khi x=0 

5 tháng 12 2016

a)

gồm bình phường (a^2+2ab+b^2)=(a+b)^2 (*)

5-8x-x^2=-(x^2+8x-5) đây đâu trừ ra ngoài

(....) biến đổi cho giống biểu thức trên (*)

-(x^2+2.4.x+4^2) ....(ở đây a=x; b=4)

xong như vậy ta đã thêm 4^2=16  vào biểu thức mang dấu(-)

vậy ta công trả lại 16

-(x^2+2.4.x+4^2)+16+5 { còn 5 nguyên ban đầu )

=21-(x+4)^2

{x+4}^2 luôn dương=> -(x+4)^2 luon am

=> 21-(x+4)^2 \(\ge\)21

GTNN=21

14 tháng 8 2018

a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2

Vậy MinA=2 \(\Leftrightarrow\)x=2

b) B= -(x-1)2-(2y+1)2+7 \(\le\)7

Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)

Vậy MaxB=7 ....

14 tháng 8 2018

cảm ơn bạn nha

\(a,x^2+x+1=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)

Dấu '' =  '' xảy ra khi : \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)

Vậy GTLN của biểu thức = 3/4 khi x=-1/2

\(b,2+x-x^2=-x^2+x+2\)

\(=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4},\forall x\)

Dấu '' = '' xảy ra khi: x-1/2=0 => x=1/2

Vậy GTNN của biểu thức = 9/4 khi x=1/2

\(c,x^2-4x+1=\left(x^2-2.x.2+4\right)-3=\left(x-2\right)^2-3\)

Vì \(\left(x-2\right)^2\ge0,\forall x\Rightarrow\left(x-2\right)^2-3\ge-3,\forall x\)

Dấu ''='' xảy ra khi x-2=0 => x=2

Vậy GTLN của biểu thức = -3 khi x=2

Các câu khác tương tự

\(d,4x^2+4x+11=\left[\left(2x\right)^2+2.2x.1+1\right]+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0,\forall x\Rightarrow\left(2x+1\right)^2+10\ge10,\forall x\)

Dấu ''='' xảy ra khi 2x+1=0 => x=-1/2

Vậy GTNN của biểu thức =10 khi x=-1/2

\(e,3x^2-6x+1=3\left(x^2-2x+1\right)-2=3\left(x-1\right)^2-2\)

Vì \(3\left(x-1\right)^2\ge0,\forall x\Rightarrow3\left(x-1\right)^2-2\ge-2,\forall x\)

Dấu ''='' xảy ra khi x-1=0 => x=1

Vậy GTNN của biểu thức =-2 khi x=1

\(f,x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0,\forall x;\left(y-2\right)^2\ge0,\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1,\forall x,y\)

Dấu ''='' xảy ra khi \(\orbr{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy GTNN của biểu thức =1 khi x=1 và y=2

25 tháng 10 2018

 A = 0

b=0

hok tốt

25 tháng 10 2018

a) Ta có:

\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left[x^2+5x-6\right]\left[x^2+5x+6\right]\)

Đặt x2 + 5x = t. Biểu thức đó là:

\(\left[t-6\right]\left[t+6\right]\)

\(=t^2-36\ge-36\forall t\)

Dấu "=" xảy ra \(\Leftrightarrow t=0\)

\(\Leftrightarrow x^2+5x=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy, Min(x - 1)(x + 2)(x + 3)(x + 6) = -36 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

24 tháng 6 2018

1) \(A=\frac{2x+1}{x^2+2}\)

\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)

\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2 

18 tháng 9 2019

Câu 1: Tự làm :D

Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy...

Câu 3:

a) Trùng với câu 2

b) ĐK:x khác -1

\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)

Đẳng thức xảy ra khi x = 0

18 tháng 9 2019

Làm nốt cái câu 1 và đầy đủ cái câu 2:v

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

Làm nốt nha.Lười quá:((

2

\(A=x^2-2xy+2y^2-4y+5\)

\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)

\(A\ge1\)

Dấu "=" xảy ra tại \(x=y=2\)