Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A_n=n\left(n^2+1\right)\left(n^2+4\right)\)
\(=\left(n^3+n\right)\left(n^2+4\right)\)
\(=n^5+4n+5n^3\)
\(=n^5-n+5n+5n^3\)
Vì \(n^5\) co dạng \(n^{4k+1}\) (k thuộc N) nên \(n^5\) luôn có chữ số tận cùng giống n
\(\Rightarrow n^5-n=\overline{.....0}⋮5\)
Do đó \(n^5-n+5n+5n^3⋮5\) hay \(A_n⋮5\) (đpcm)
Gì mà chia hết cho 13 ;
\(3^6+3^3+1=757\) không chia hết cho 13
\(3^{12}+3^6+1\) không chia hết cho 13;
Đề sai oy
\(A=n\left(2n+7\right)\left(7n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)\)
\(=14n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)
Ta có :
\(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Leftrightarrow A⋮6\rightarrowđpcm\)
A = n(2n+7) ( 7n+7)
= 7n ( n+1) (2n+4+3)
= 14n (n+1) 2(n+2) + 3.7(n+1)n
Ta có : n(n+1) (n+2) là tích của 3 số tự nhiên liên tiếp
=> n (n+1) (n+2) chia hết cho 6
=> A chia hết cho 6 (đpcm)
Ta có \(N^2=\left(n_1+n_2+...+n_{100}\right)^2=n_1^2+n_2^2+...+n_{100}^2+2A=2013^2\) (A là tập hợp các số còn lại mà chia hết cho 2, ký hiệu vậy cho nó gọn)
\(\Rightarrow S=2013^2-2A\)
\(\Rightarrow S-1=2013^2-1-2A\)
Ta thấy rằng 2A chia hết cho 2 và 20132 - 1 chia hết cho 2 nên S - 1 chia hết cho 2
a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.
Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.
Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)
b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)
Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.
Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.
Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.
c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
B là tích bốn số tự nhiên liên tiếp nên chia hết 3.
Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.
Mà (3;8) = 1 nên B chia hết 3.8 = 24.