K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a.\)

\(x\left(x+z\right)+y\left(y-z\right)-2xy+37\)

\(=x^2+xz+y^2-yz-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+z\left(x-y\right)+37\)

\(=\left(x-y\right)^2+z\left(x-y\right)+37\)

\(=7^2+x.7^2+37\)

\(=86+49x\)

\(b.\)

\(x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10\)

\(=25\)

13 tháng 8 2019

a) \(A=x^2-4y^2+x-2y\)

\(=\left(x-2y\right)\left(x+2y\right)+\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y+1\right)\)

Thay vào 

b) tương tự

13 tháng 8 2019

Tại x=1 ; y=2 thay vào BT ta có 

A= \(1-4.2^2+1-2.2=\)-18

ý b) cũng thay v thoy 

17 tháng 6 2015

Mình giải cho bạn ở http://olm.vn/hoi-dap/question/104690.html rồi nha

18 tháng 6 2015

Chọn đúng cho mình đi.

Đúng nha

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

10 tháng 9 2018

a) Ta có:

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào A

\(A=3^2-4.3+1\)

\(A=9-12+1\)

\(A=-2\)

b) Sửa đề:

\(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(B=x^2+2x+y^2-2y-2xy+37\)

\(B=\left(x^2+y^2+1+2x-2y-2xy\right)+36\)

\(B=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào B

\(B=\left(7+1\right)^2+36\)

\(B=100\)

c) Ta có:

\(C=x^2+4y^2-2x+10+4xy-4y\)

\(C=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào C

\(C=5^2-2.5+10\)

\(C=25-10+10\)

\(C=25\)

12 tháng 7 2017

b) \(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)

\(=\left(x-y\right)\left(1-xy\right)-3xy\)

\(=x-x^2y-y\)

1 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

Rút gọn biểu thức;

\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)

\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)

Tìm a để đa thức.. Bạn chia cột dọ thì da

1 tháng 10 2016

\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)

29 tháng 12 2017

B1 :

a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 =  100^2+100^2 = 20000

b, = (2x^2+16x+32)-2y^2

   = 2.(x+4)^2-2y^2

   = 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)

c, <=> (x^2-3x)+(2x-6) = 0

<=> (x-3).(x+2) = 0

<=> x-3=0 hoặc x+2=0

<=> x=3 hoặc x=-2

B2 :

P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x

k mk nha

29 tháng 12 2017

Bai 1

a)B=(x+1)2+(y-2)2

     Voi x=99,y=102

=>B= 1002+1002

       =20000

b)\(2x^2-2y^2+16x+32\)

=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)

=\(2\left[\left(x+4\right)^2-y^2\right]\)

=2(x-y+4)(x+y+4)

c)\(x^2-3x+2x-6=0\)

=>x(x-3)+2(x-3)=0

=>(x-3)(x+2)=0

=>x=-2;3

Bai 2

\(P=\frac{9-x^2}{x^2-3x}\)

    =\(-\frac{x^2-9}{x\left(x-3\right)}\)

   =\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)

=\(\frac{-x-3}{x}\)

16 tháng 8 2017

M=(x+y)3+2(x+y)2

=73+2.72=72(7+2)=49.9= 441

x+y=7 => x=7-y

\(M=\left(7-y+y\right)^3+2\left(7-y\right)^2+4\left(7-y\right)y+2y^2\\ M=343+2y^2-28y+91+28y-4y^2+2y^2\\ M=343+91=434\)