K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2023

Để chứng minh rằng luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau, ta sẽ sử dụng nguyên lý "Ngăn chặn trực tiếp" (Pigeonhole principle).

Giả sử chúng ta chia các số từ 1 đến n thành hai nhóm tùy ý, mỗi nhóm chứa một nửa số. Vì n lớn hơn hoặc bằng 19, chúng ta có ít nhất 10 số trong mỗi nhóm.

Xét các chữ số hàng đơn vị của các số từ 1 đến n. Chúng ta có 10 chữ số hàng đơn vị khác nhau từ 0 đến 9. Vì vậy, trong mỗi nhóm, chắc chắn sẽ có ít nhất một số có chữ số hàng đơn vị giống nhau.

Do đó, luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau.

Tuy nhiên, bài toán không đúng với n = 18. Khi n = 18, chúng ta có thể chia các số từ 1 đến 18 thành hai nhóm sao cho mỗi nhóm không có số nào có chữ số hàng đơn vị giống nhau. Ví dụ: nhóm 1 chứa các số 1, 2, 3, 4, 5, 6, 7, 8, 9 và nhóm 2 chứa các số 10, 11, 12, 13, 14, 15, 16, 17, 18.

24 tháng 8 2023

Mình cảm ơn bạn nhiều!

25 tháng 11 2016

Gọi tổng các chữ số của A là (S)

Trong dãy số 1;2;3...;100

Ta bỏ riêng số 100 ra và lập thành một dãy mới:

0;1;2;...;99 (*)

Ta ghép thành từng cặp:

(0;99);(1;98);(2;97);...;(49;50)

Tổng các chữ số của 2 số trong một cặp là:18

Do đó tổng các chữ số của các số trong (*) là: 18.50 = 900

Suy ra S(A) = 900+1 = 901 ( vì số một trăm có đồng dư chữ số là 1 )

Suy ra S(A) chia cho 9 dư 1

Suy ra A  ko chia hết cho 9 suy ra A ko chia hết cho 2007 (vì 2007 chia hết cho 9 )

PHẦN B

Ta thấy một tổng luôn đồng dư với tổng các chữ số của  các số hạng khi chia cho cho 9.Do đó B đồng dư với A khi chia cho 9 

Suy ra B chi cho 9 dư 1

Suy ra B ko chia hết cho cho 9 suy ra B ko chia hết cho 2007

b)Có thể chia hết

Chẳng hạn:1-2-3+4+5-6-7+8+...+97-98-99+100=0 chia hết cho 1995

a)Ta thấy rằng dừ sắp sếp thành số A như thế nào thì tổng các chữ số của chúng ko đổi mà tổng của chúng là (1+100)100:2=5050 ko chia hết cho 3.Suy ra số A ko chia hết cho 3 mà 1995 chia hết cho 3 nên số A ko chia hết cho 1995

4 tháng 8 2020

cảm ơn bạn vì đã trả lời

31 tháng 8 2015

bạn lên câu hỏi tương tự mà làm

5 tháng 10 2016

Ai giải hộ cái nào 

22 tháng 11 2015

Bài 1:

Gọi số nhóm chia được là a (a thuộc N*)

Theo bài ra ta có:

18 chia hết cho a ; 24 chia hết cho a

=> a thuộc ƯC(18,24)

Ta có :

18= (1;2;3;6;9;18) ( ngoặc ( ở đây là ngoặc nhọn)

24 = (1;2;3;4;6;8;12;24)

=> ƯC(18,24) = ( 1;2;3;6)

Vậy có thể chia nhiều nhất thành 6 nhóm.

Khi đó, mỗi nhóm có:

Số bạn nam là:

18 : 6 = 3 (bạn)

Số bạn nữ là:

24 : 6 = 4 (bạn)




 

22 tháng 11 2016

Bài 2:

Gỉai 

Gọi a là số tổ dự định chia (a thuộcN)và a ít nhất

Theo bài ra ta có:

28 chia hết cho a;24 chia hết cho a

Do đó a là ƯC (28;24)

28=2mũ2.7

24=2mũ3.3

ƯCLN(28:24)=2mũ2=4

Suy ra ƯC(24:28)=Ư(4)=(1:2:4)

Vậy có 3 cách chia số nam và nữ vào các tổ đều nhau.

Chia cho lớp thành 4 tổ thì mỗi tổ có số học sinh ít nhất 

1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a)...
Đọc tiếp

1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a) 5x = 125; b) 32x = 81 ; c) 52x-3 – 2.52 = 52 .3 8) Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương. 9) Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10. 10) Tính A = 4 + 2 2 + 2 3 + 2 4 +. . . + 2 20 11) Tìm x biết: ( x + 1) + ( x + 2) + . . . + ( x + 100) = 5750. 12) Chứng minh nếu: (ab + cd + eg )⋮ 11 thì abc deg ⋮ 11. 13) Chứng minh 10 28 + 8 ⋮ 72. 14) Hai lớp 6A;6B cùng thu nhặt một số giấy vụn bằng nhau. Lớp 6A có 1 bạn thu được 26 Kg còn lại mỗi bạn thu được 11 Kg ; Lớp 6B có 1 bạn thu được 25 Kg còn lại mỗi bạn thu được 10 Kg . Tính số học sinh mỗi lớp biết rằng số giấy mỗi lớp thu được trong khoảng 200Kg đến 300 Kg. 15) So sánh: 222333 và 333222 16) Tìm các chữ số x và y để số 1x8y2 chia hết cho 36 17) Tìm số tự nhiên a biết 1960 và 2002 chia cho a có cùng số dư là 28 18) Cho : S = 30 + 32 + 34 + 36 + ... + 32002 a) Tính S b) Chứng minh S ⋮ 7 19) Tìm số tự nhiên nhỏ nhất, biết rằng khi chia số này cho 29 dư 5 và chia cho 31 dư 28 20) Tìm chữ số tận cùng của các số sau: a) 571999 b) 931999 21) Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5. 22) Cho phân số b a (0 < a < b) cùng thêm m đơn vị (m > 0) vào tử và mẫu thì phân số mới lớn hơn hay bé hơn b a 23) Cho số 155*710* 4*16 có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tuỳ thì số đó luôn chia hết cho 396. 24) Chứng tỏ rằng: 2x + 3y chia hết cho 17 ⇔ 9x + 5y chia hết cho 17 25) Một số tự nhiên chia cho 120 dư 58, chia cho 135 dư 88. Tìm a, biết a bé nhất 26) Người ta viết các số tự nhiên liên tiếp bắt đầu từ 1 đến 2006 liền nhau thành một số tự nhiên L . Hỏi số tự nhiên L có bao nhiêu chữ số 27) Có bao nhiêu chữ số gồm 3 chữ số trong đó có chữ số 4 28) Cho các số 0; 1; 3; 5; 7; 9. Hỏi có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho.
Ai làm nhanh mik tick

0
24 tháng 2 2021

1/dư 0

2/8 nhóm

3/48 cm2

4/gấp 2 lần