K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

1b) Ta có: \(\frac{x}{3}\) = \(\frac{y}{4}\) => \(\frac{x}{15}\) = \(\frac{y}{20}\)

\(\frac{y}{5}\) = \(\frac{z}{6}\) => \(\frac{y}{20}\) = \(\frac{z}{24}\)

=> \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\)

Đặt \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\) = k

=> x = 15k; y = 20k và z = 24k

Thay vào A ta có:

A = \(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)

=> A = \(\frac{30k+60k+96k}{45k+80k+120k}\)

=> A = \(\frac{\left(30+60+96\right)k}{\left(45+80+120\right)k}\)

=> A = \(\frac{186k}{245k}\)

=> A = \(\frac{186}{245}\)

Vậy A = \(\frac{186}{245}\).

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Lời giải:
Từ \(\frac{x}{3}=\frac{y}{4}; \frac{y}{5}=\frac{z}{6}\Rightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{24}\).

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=t(t\neq 0)\Rightarrow x=15t; y=20t; z=24t\)

Khi đó:

\(A=\frac{2x+3y+4z}{3x+4y+5z}=\frac{2.15t+3.20t+4.24t}{3.15t+4.20t+5.24t}=\frac{186t}{245t}=\frac{186}{245}\)

18 tháng 6 2016

a)Đặt x/2=y/5=z/7=k suy ra x=2k, y=5k, z=7k> Thay vào A ta được kết quả là 4/5.

b)Vì x/3=y/4 nên x/15=y/20.Vì y/5=z/6 nên y/20=z/24

Suy ra:x/15=y/20=z/24.Tương tự phần a) đặt k rồi tính kết quả.


 

18 tháng 6 2016

a)Ta có:Ta có x/5 = y/4 = z/3 

Dễ thấy : y/4 = 2y/8 = -2y/-8 và z/3 = 3z/9 

Suy ra : x/5 = y/4 = z/3 => x/5 = 2y/8 = 3z/9 = (x + 2y + 3z)/(5 + 8 + 9) = (x + 2y + 3z)/22 
(tính chất của dãy tỉ số bằng nhau) 

Tương tự : x/5 = -2y/-8 = 3z/9 = (x - 2y + 3z)/(5 - 8 + 9) = (x- 2y + 3z)/6 

Ta có : (x + 2y + 3z)/22 = (x - 2y + 3z)/6 (cùng bằng x/5) 

=> (x + 2y + 3z)/(x - 2y + 3z) = 22/6 = 11/3 

b)cho x/3=y/4 va y/5=z/6.tinh M=2x+3y+4z/3x+4y+5z? | Yahoo Hỏi & Đáp

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

29 tháng 10 2016

Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\left(k\ne0\right)\)\(\Rightarrow\begin{cases}x=15k\\y=20k\\z=24k\end{cases}\)

\(A=\frac{2x+3y+4z}{3x+4y+5z}=\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)

Vậy \(A=\frac{186}{245}\)

29 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\\ \frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)

Từ (1) và (2 ) suy ra :\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

Đặt :\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\)

\(\Rightarrow\)x=15k; y=20k và z=24k (3)

Thay (3) vào A ta được:

A=\(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{186k}{245k}=\frac{186}{245}\)

Vậy A=\(\frac{186}{245}\)

Bài lm của mk có j thiếu sót thì bn tự bổ xung nha

 

1 tháng 8 2018

tui lớp 5 giải dc phần a có cần tui giúp ko

8 tháng 3 2018

Bạn tham khảo nhé 

Ta có : 

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)

\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)

\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< 1-\frac{1}{50}\)

\(A< \frac{49}{50}\)\(\left(1\right)\)

Lại có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)

\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)

\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)

\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)

\(\Rightarrow\)\(B\notinℤ\)

Vậy B không là số nguyên 

4 tháng 2 2019

đúng ko zậy