K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)

\(2A=1+\left(\frac{1-\frac{1}{3^{100}}}{2}\right)-\frac{101}{3^{101}}< 1+\frac{1}{2}=\frac{3}{2}\)

\(\Rightarrow A< \frac{3}{2}:2=\frac{3}{4}\)( đpcm )

14 tháng 10 2017

Đúng rồi bạn giỏi quá !!!

31 tháng 1 2017

\(S=3+3^2+3^3+....+3^{100}\)

\(3S=3^2+3^3+3^4+...+3^{101}\)

\(3S-S=3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-....-3^{100}\)

\(2S=3^{101}-3\)

\(S=\frac{3^{101}-3}{2}\)

\(P=3^{101}\)

=> S < P

Mình sửa lại đề là P = 3101 nhé, chứ ko để 2101 thì ko làm được

10 tháng 9 2018

\(D=\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)

\(\Rightarrow3D=2+\frac{3}{3}+...+\frac{101}{3^{99}}\)

\(\Rightarrow2D=\left(2-\frac{101}{3^{100}}\right)+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)

Đặt \(E=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3E=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow2E=1-\frac{1}{3^{99}}\Rightarrow E=\frac{1-\frac{1}{3^{99}}}{2}\)

\(\Rightarrow2D=\left(2-\frac{101}{3^{100}}\right)+\left(\frac{1-\frac{1}{3^{99}}}{2}\right)\)

\(\Rightarrow D=\frac{\left(2-\frac{101}{3^{100}}\right)+\left(\frac{1-\frac{1}{3^{99}}}{2}\right)}{2}\)

\(3A=\frac{1}{1}+\frac{2}{3}+\frac{3}{3^2}+....+\frac{101}{3^{100}}\)

\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+...+\frac{1}{3^{100}}< \frac{3}{2}\Rightarrow A< \frac{3}{4}\)

chủ yếu là cách làm thôi, có gì bạn tự tính

16 tháng 9 2017

chắc đúng rồi k sai đâu

16 tháng 9 2017

dung sai deo biet

Ban ghi lai ro de dc k a 

17 tháng 9 2018

tính tổng:

S=(1+2.5+3.5...+101+201)+(12+22+32+...1002)

19 tháng 10 2017

A = 1 + 2 + 2^2 + 2^3 + ... + 2^100

2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^101

2A - A = A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^101 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^100 )

A = 2^101 - 1

Vì 2^101 - 1 < 2^101 nên A < B hay B > A 

19 tháng 10 2017

Ta có:

\(A=2^0+2^1+2^2+2^3+...+2^{100}\)

\(A=1+2+2^2+2^3+...+2^{100}\)

\(2A=2+2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-1\left(1\right)\)

\(B=2^{101}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\)suy ra:\(A< B\)

Vậy \(A< B\)

CHÚC BN HOK TỐT NHA