Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(A=9x\)
Thay x = 15 vào, ta có:
\(A=9.15=135\)
b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(B=5x^2-20xy-4y^2+20xy\)
\(B=5x^2-4y\)
Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có:
\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)
c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)
\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)
\(C=9x^2y^2-xy^3-8x^3\)
Thay \(x=\frac{1}{2};y=2\) vào, ta có:
\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)
d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(D=18x^2+12x-7\)
Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
+) Với x = -2
\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)
+) Với x = 2
\(D=18.2^2+12.2-7=89\)
không nhé
(2x+1)(4x^2-xy+1)-(8x^3-1)
= ((2x)^3 -1) - ( 8x^3 - 1 ) = 0
Vậy là không phụ thuộc vào biến nhé bạn
a
Ta có
\(2x^2+2x=2x\left(x+1\right)\)
b
\(\left(1+xy\right)^2-\left(x+y\right)^2=\left(1+xy-x-y\right)\left(1+xy+x+y\right)\)
\(\left[\left(1-x\right)-y\left(1-x\right)\right]\left[\left(1+x\right)+y\left(1+x\right)\right]=\left(1-x\right)\left(1-y\right)\left(1+x\right)\left(1+y\right)\)
Ta có
2x2 + y2 + 4 = 4x + 2xy
<=> (x2 - 4x + 4) + (x2 - 2xy + y2) = 0
<=> (x - 2)2 + (x - y)2 = 0
<=> x = y = 2
=> A = x2016.y2017 - x2017.y2016 + 36xy
= 22016.22017 - 22017.22016 + 36.2.2
= 144