K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

\(a,2\left(x-1\right)+3=x+2\)

\(\Leftrightarrow2x-2+3=x+2\)

\(\Leftrightarrow2x-x=2+2-3\)

\(\Leftrightarrow x=1\)

Vậy \(S=\left\{1\right\}\)

\(b,\left(3x-7\right)\left(x+5\right)=\left(5+x\right)\left(3-2x\right)\)

\(\Leftrightarrow\left(3x-7\right)\left(x+5\right)-\left(5+x\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(3x-7-3+2x\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(5x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\5x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{-5;2\right\}\)

23 tháng 3 2020

Dễ thế mà bạn không tự làm ak

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

15 tháng 2 2020
https://i.imgur.com/zKeoHqB.jpg
12 tháng 7 2019

\(a,\frac{x+1}{x-2}-\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x^2+4}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2+2x+x+2-\left(x^2-2x-x+2\right)=2x^2+4\)

\(\Leftrightarrow x^2+3x+2-x^2+2x+x-2=2x^2+4\)

\(\Leftrightarrow6x=2x^2+4\)

\(\Leftrightarrow2x^2+4-6x=0\)

\(\Leftrightarrow2x^2+4-6x=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

12 tháng 7 2019

\(b,\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=5\left(x-1\right)\left(x-1\right)\)

\(\Leftrightarrow2x^2+2x+x+1=5\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+3x+1=5x^2-10x+5\)

\(\Leftrightarrow5x^2-2x^2-10x-3x+5-1=0\)

\(\Leftrightarrow3x^2-13x+4=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{1}{3}\end{cases}}}\)