Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(2015/ 2019 + 3/2019 + 1/2019 ) : 1/2
= 2019/2019 x 2
= 1 x2
=2
2015/2019:1/2+3/2019:1/2+1/2019:1/2
=(2015/2019+3/2019+1/2019):1/2
=1:1/2
=2
k cho mink nha
số lượng số hạng của dãy số là
( 2021 - 2 ) : 1 + 1 = 2020
tổng của dãy số là
( 2021 + 2) x 2020 : 2 = 2043230
vậy A = \(\frac{1}{2043230}\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\cdot\cdot\cdot\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\cdot\cdot\cdot\times\frac{2018}{2019}\)
\(=\frac{1\times2\times\cdot\cdot\cdot\times2018}{2\times3\times\cdot\cdot\cdot\times2019}\)
\(=\frac{1}{2019}\)
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot.....\cdot\left(1-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}.........\cdot\frac{2018}{2019}\)
\(A=\frac{1.3}{2.2019}\)
\(A=\frac{3}{2.2019}=\frac{1}{2.673}=\frac{1}{1346}\)
_Vi hạ_
A=(2/2-1/2) . (3/3-1/3) . ( 4/4 - 1/4 ) . (5/5 - 1/5) .... (2018/2018-1/2018). (2019/2019 - 1/2019)
A= 1/2 . 2/3 . 3/4 . 5/5 ..... 2017/2018 . 2018/2019
A= 1/2019
A = 1-1/2 . 1- 1/3 . 1-1/4 . 1-1/5 . ... . 1-1/2018 . 1-1/2019
= 0 . 0 . 0 . 0 . ... . 0 . 0.
= 0
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2018}\right)\times\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2017}{2018}\times\frac{2018}{2019}\)
\(=\frac{1\times2\times3\times...\times2017\times2018}{2\times3\times4\times...\times2018\times2019}\)
\(=\frac{1}{2019}\)
\(A=\left(2020\times2019+2019\times2018\right)\times\left(1+\dfrac{1}{2}:1\dfrac{1}{2}-1\dfrac{1}{3}\right)\)
\(A=\left[2019\times\left(2020+2018\right)\right]\times\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)\)
\(A=4038\times2019\times\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
\(A=4038\times2019\times0\)
\(A=0\)
\(\frac{1}{1}+2+\frac{1}{1}+2+3+\frac{1}{1} +2+3+4+...+\frac{1}{1}+2+3......2019\)
Ta có : \(\frac{2}{2}+\left(\frac{1}{2}\right)+\frac{2}{2}+\left(1+2+3\right)+....+\frac{2}{2}+\left(1+2+....+50\right)\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{2550}\)
\(=\frac{2}{2}.3+\frac{2}{3}.4+....+\frac{2}{50}.51\)
\(=2.\left(\frac{1}{2}.3+\frac{1}{3}.4+.....+\frac{1}{50}.51\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2.\left(1-\frac{1}{51}\right)\)
\(=2.\frac{50}{51}\)
\(=\frac{100}{51}\)
Hmmm , kh bt có đúng kh nhỉ ???
Nếu kh đúng chỗ nào mong m.n chỉ ạ
:>>