K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

4 nha em

4nha em 

4nha em

HT

23 tháng 1 2022

bằng 4 nhé kb với tớ ko?

18 tháng 11 2016

ĐK: -1<x\(\ne\)0

Đặt \(log_3\left(x+1\right)=t\) (t\(\ne\)0)

bpt trở thành \(\frac{1}{3^t}>\frac{1+t}{3^t-1}\)

\(\Leftrightarrow\frac{1+t}{3^t-1}-\frac{1}{3^t}< 0\Leftrightarrow\frac{t.3^t+1}{3^t\left(3^t-1\right)}< 0\)

\(3^t>0\forall t\) nên ta có thể nhân 2 vế của bpt với \(3^t\)

Khi đó, ta có bpt \(\Leftrightarrow\frac{t.3^t+1}{3^t-1}< 0\)

*) Đặt \(f\left(t\right)=t.3^t+1\), f(0)=1

dễ thấy f(t) đồng biến trên tập R

*) Xét 2 trường hợp:

+TRƯỜNG HỢP 1) với t<0 \(\Leftrightarrow3^t< 1\Leftrightarrow3^t-1< 0\) (1)

\(\lim\limits_{t\rightarrow-\infty}\left[f\left(t\right)\right]=1\) nên f(t)>1 với mọi t \(\Leftrightarrow t.3^t+1>1\Rightarrow t.3^t+1>0\forall t\) (2)

kết hợp (1) và (2) ta thấy t<0 thỏa mãn bpt

+TRƯỜNG HỢP 2) với t>0 \(\Leftrightarrow3^t-1>0\) (3)

lại có f(t)>f(0) với mọi t>0 \(\Leftrightarrow t.3^t+1>1\) (4)

kết hợp (3) và (4) ta thấy không thỏa mãn bpt

 

vậy bpt đã cho tương đương t<0\(\Leftrightarrow log_3\left(x+1\right)< 0\Leftrightarrow x+1< 1\Leftrightarrow x< 0\)

kết hợp ĐK ta có -1<x<0

18 tháng 11 2016

Giờ mới trông thấy bài này :)))

5 tháng 5 2018

Đk: x > -1/3

<=> 3x+1 < x+7

<=> x < 3

kết hợp đk --> -1/3 < x < 3

--> nghiệm nguyên của x = { 0; 1 ; 2 }

22 tháng 1 2022

1+1 bằng 2 nha

chúc hok tốt

t i c k mik nha

22 tháng 1 2022

1+1=2 nhá k cho mik

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải

Từ bảng biến thiên ta thấy ĐTHS có 2 điểm cực trị.

Điểm cực đại: \((-1;5)\)

Điểm cực tiểu: \((3;1)\)