K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

 

  y4 + 64 = y4 + 16y2 + 64 - 16y2  

<=>y4-y4-16y2+16y2+64-64

<=>0=0

Vậy có vô số y thoa mãn 

  y4 + 64 = y4 + 16y2 + 64 - 16y2  

13 tháng 8 2015

y4 + 64 = y4 + 16y2 + 64 - 16y2  

= (y2 + 8)2 - (4y)2

= (y2 + 8 - 4y)(y2 + 8 + 4y)

7 tháng 10 2016

a) \(x^3-3x^2-3x+1\)

\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

b) \(4x^2+4x+1-y^2-16y-64\)

\(=\left(2x+1\right)^2-\left(y+8\right)^2\)

\(=\left(2x+1-y-8\right)\left(2x+1+y+8\right)\)

\(=\left(2x-7-y\right)\left(2x+9+y\right)\)

c) \(x^3+3x^2+3x+1-27z^3\)

 \(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

d) \(\left(x^2+y^2-5\right)^2-4\left(x^2y^2+4xy+4\right)\) 

\(=\left(x^2+y^2-4-1\right)^2-4\left(xy+2\right)^2\)

\(=\left(x^2+y^2-5\right)^2-4\left(xy+2\right)^2\)

\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)

\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)

 \(=\left[\left(x-y\right)^2-9\right]\left[\left(x+y\right)^2-1\right]\)

\(=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-1\right)\left(x+y+1\right)\)

Ta có công thức :

\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(\Rightarrow m^2-n^2=\left(m-n\right)\left(m+n\right)\)

31 tháng 7 2016

làm tất cả đi bạn

25 tháng 7 2017

sẽ thay đổi đề 1 chút

\(4x^2+4x+1-y^2+16y-64=\left(2x+1\right)^2-\left(y-8\right)^2=\left(2x+1+y-8\right)\left(2x+1-y+8\right)=\left(2x+y-7\right)\left(2x-y+9\right)\)

26 tháng 7 2017

đề là 4x3

Sửa đề: \(4x^2+4x+1-y^2+16y-64\)

\(=\left(4x^2+4x+1\right)-\left(y^2-16y+64\right)\)

\(=\left(2x+1\right)^2-\left(y-8\right)^2\)

\(=\left(2x+1+y-8\right)\left(2x+1-y+8\right)\)

\(=\left(2x+y-7\right)\left(2x-y+9\right)\)

22 tháng 9 2020

a) x3 - 9x2 + 14x = 0

<=> x( x2 - 9x + 14 ) = 0

<=> x( x2 - 2x - 7x + 14 ) = 0

<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0

<=> x( x - 2 )( x - 7 ) = 0

<=> x = 0 hoặc x = 2 hoặc x = 7

b) x3 - 5x2 + 8x - 4 = 0

<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0

<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0

<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0

<=> x( x - 2 )2 - ( x - 2 )2 = 0

<=> ( x - 2 )2( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

c) x4 - 2x3 + x2 = 0

<=> x2( x2 - 2x + 1 ) = 0

<=> x2( x - 1 )2 = 0

<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) 2x3 + x2 - 4x - 2 = 0

<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0

<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0

<=> ( 2x + 1 )( x2 - 2 ) = 0

<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)

17 tháng 6 2017

b1:

câu a,f áp dụng a2-b2=(a-b)(a+b)

câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)

câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)

câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)

câu g xem lại đề

17 tháng 6 2017

b2:

\(f\left(x;y\right)=x^2+y^2-6x+5y+9=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu "=" xảy ra khi x=3 và y=-5/2

câu c làm tương tự

24 tháng 7 2018

a, m^2 - n^2 
= (m-n)^2 + 2mn

6 tháng 5 2015

\(x^4+2x^3-2x^2+2x-3=0\)

\(\left(x^4-1\right)+\left(2x^3-2x^2\right)+\left(2x-2\right)=0\)

\(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+2x^2\left(x-1\right)+2\left(x-1\right)=0\)

\(\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)+2x^2+2\right]=0\)

\(\left(x-1\right)\left(x^3+x+x^2+1+2x^2+2\right)=0\)

\(\left(x-1\right)\left(x^3+3x^2+x+3\right)\)

\(\left(x-1\right)=0or\left(x^3+3x^2+x+3\right)=0\)

  • \(x-1=0\Leftrightarrow x=1\)
  • \(x^3+3x^2+x+3=0\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\Leftrightarrow x+3=0\left(x^2+1>0\right)\Leftrightarrow x=-3\)