Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(x^2-\left(2m+1\right)x+m^2+m-6=0\left(1\right)\)
Ta có:
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25>0\forall m\)
\(\Rightarrow\) Phương trình (1) luôn có hai nghiệm phân biệt.
Theo định lí Vi-et \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-6\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)
\(\Rightarrow\left|x_1-x_2\right|=5\)
Lại có:
\(x_1^2+x_2^2+x_1x_2=\left(x_1+x_2\right)^2-x_1x_2=\left(2m+1\right)^2-\left(m^2+m-6\right)=3m^2+3m+7\)
Khi đó \(\left|x_1^3-x_2^3\right|=50\)
\(\Leftrightarrow\left|x_1-x_2\right|\left(x_1^2+x_2^2+x_1x_2\right)=50\)
\(\Leftrightarrow5\left(3m^2+3m+7\right)=50\)
\(\Leftrightarrow m^2+m-1=0\)
\(\Leftrightarrow m=\dfrac{-1\pm\sqrt{5}}{2}\)
Lời giải:
PT hoành độ giao điểm:
$x^2-(2x+2m-1)=0$
$\Leftrightarrow x^2-2x+(1-2m)=0(*)$
Để $(P)$ và $(d)$ cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì pt $(*)$ có 2 nghiệm pb $x_1,x_2$
Điều này xảy ra khi $\Delta'=1-(1-2m)=2m>0\Leftrightarrow m>0$
Theo định lý Viet:
$x_1+x_2=2$
$x_1x_2=1-2m$
Khi đó:
$x_2^2(x_1^2-1)+x_1^2(x_2^2-1)=8$
$\Leftrightarrow 2(x_1x_2)^2-(x_1^2+x_2^2)=8$
$\Leftrightarrow 2(x_1x_2)^2-[(x_1+x_2)^2-2x_1x_2]=8$
$\Leftrightarrow 2(1-2m)^2-[2^2-2(1-2m)]=8$
$\Leftrightarrow 8m^2-12m=8$
$\Leftrightarrow 2m^2-3m-2=0$
$\Leftrightarrow (m-2)(2m+1)=0$
$\Leftrightarrow m=2$ hoặc $m=\frac{-1}{2}$
Vì $m>0$ nên $m=2$
a (tóm tắt lại): Phương trình hoành độ giao điểm của (P) và (d):
\(x^2=mx-m+1\)
\(\Leftrightarrow x^2-mx+m-1=0\left(1\right)\)
Để (d) cắt (P) tại 2 điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt. Do đó \(\Delta>0\Leftrightarrow m\ne2\).
b) \(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)
Do đó phương trình (1) có 2 nghiệm là x=1 và x=m-1. Mặt khác phương trình (1) cũng có 2 nghiệm phân biệt là x1, x2 và vai trò của x1, x2 trong biểu thức A là như nhau nên ta giả sử \(x_1=1;x_2=m-1\left(m\ne2\right)\)
Từ đây ta có:
\(A=\dfrac{2.1.\left(m-1\right)}{1^2+\left(m-1\right)^2+2\left[1+1.\left(m-1\right)\right]}\)
\(=\dfrac{2\left(m-1\right)}{1+\left(m-1\right)^2+2+2\left(m-1\right)}\)
\(=\dfrac{2\left(m-1\right)}{1+\left(m^2-2m+1\right)+2+2m-2}=2.\dfrac{m-1}{m^2+2}\)
\(\Rightarrow A\left(m^2+2\right)=2\left(m-1\right)\)
\(\Leftrightarrow Am^2-2m+2\left(A+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình bậc 2 tham số A ẩn x, ta có:
\(\Delta'\left(2\right)=1^2-2A\left(A+1\right)=-2\left(A^2+A\right)+1=-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\)
Để phương trình (2) có nghiệm thì \(\Delta'\left(2\right)\ge0\Rightarrow-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow-\dfrac{\sqrt{3}+1}{2}\le A\le\dfrac{\sqrt{3}-1}{2}\)
Để phương trình (2) có nghiệm kép thì: \(\Delta'\left(2\right)=0\Rightarrow m=\dfrac{1}{A}\)
\(MinA=-\dfrac{\sqrt{3}+1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}\dfrac{1}{-\dfrac{\sqrt{3}+1}{2}}=1-\sqrt{3}\)
\(MaxA=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}=\dfrac{1}{\dfrac{\sqrt{3}-1}{2}}=\sqrt{3}+1\)
Mình mới sửa một chút nhé.
\(\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\) \(\Leftrightarrow\left|A+\dfrac{1}{2}\right|\le\dfrac{\sqrt{3}}{2}\Leftrightarrow\left[{}\begin{matrix}A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\\A+\dfrac{1}{2}\ge\dfrac{-\sqrt{3}}{2}\end{matrix}\right.\Leftrightarrow\dfrac{-\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)
Nếu gặp dạng \(a^2\le b\) (b là số dương) thì a sẽ bé hơn b và lớn hơn số đối của b, nói chung a nằm trong khoảng từ -b đến b.
Ví dụ: \(a^2\le4\Leftrightarrow\left|a\right|\le2\Leftrightarrow-2\le a\le2\)
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m-6=0
Δ=(2m+1)^2-4(m^2+m-6)
=4m^2+4m+1-4m^2-4m+24
=25>0
=>Phương trình luôn có hai nghiệm phân biệt
\(\left|x_1^2-x_2^2\right|=50\)
\(\Leftrightarrow\left|\left(2m+1\right)\right|\cdot\sqrt{\left(2m+1\right)^2-4\left(m^2+m-6\right)}=50\)
\(\Leftrightarrow\left|2m+1\right|\cdot5=50\)
=>|2m+1|=10
=>m=9/2 hoặc m=-11/2
Phương trình hoành độ giao điểm là:
\(\left(2m-1\right)x^2=2\left(m+4\right)x-5m-2\)
=>\(\left(2m-1\right)x^2-\left(2m+8\right)x+5m+2=0\)
Để (P) cắt (d) tại hai điểm phân biệt thì
\(\left\{{}\begin{matrix}2m-1\ne0\\\text{Δ}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\left(2m+8\right)^2-4\left(2m-1\right)\left(5m+2\right)>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\4m^2+32m+64-4\left(10m^2+4m-5m-2\right)>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\4m^2+32m+64-40m^2+4m+8>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-36m^2+36m+72>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m^2-m-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\left(m-2\right)\left(m+1\right)< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-1< m< 2\end{matrix}\right.\)
Theo vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2m-8\right)}{2m-1}=\dfrac{2m+8}{2m-1}\\x_1x_2=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)
\(x_1^2+x^2_2=2x_1x_2+16\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-2x_1x_2=16\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=16\)
=>\(\left(\dfrac{2m+8}{2m-1}\right)^2-4\cdot\dfrac{5m+2}{2m-1}=16\)
=>\(\dfrac{\left(2m+8\right)^2-4\left(5m+2\right)\left(2m-1\right)}{\left(2m-1\right)^2}=16\)
=>\(\dfrac{4m^2+32m+64-4\left(10m^2-m-2\right)}{\left(2m-1\right)^2}=16\)
=>\(-36m^2+36m+72=16\left(4m^2-4m+1\right)\)
=>\(-36m^2+36m+72=64m^2-64m+16\)
=>\(-100m^2+100m+56=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{7}{5}\left(nhận\right)\\m=-\dfrac{2}{5}\left(nhận\right)\end{matrix}\right.\)
b: Phương trình hoành độ giao điểm là:
\(x^2-2\left(m-1\right)x-m^2-2m=0\)
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(-m^2-2m\right)\)
\(=4m^2-8m+4+4m^2+8m=8m^2+4>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt
\(x_1^2+x_2^2+4x_1x_2=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+2x_1x_2=36\)
\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(-m^2-2m\right)=36\)
\(\Leftrightarrow4m^2-8m+4-2m^2-4m-36=0\)
\(\Leftrightarrow2m^2-12m-32=0\)
\(\Leftrightarrow\left(m-8\right)\left(m+2\right)=0\)
hay \(m\in\left\{8;-2\right\}\)
Pt hoành độ giao điểm: \(x^2-mx+m-1=0\)
\(a+b+c=0\Rightarrow\) pt luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)
Để pt có 2 nghiệm pb \(\Rightarrow m-1\ne1\Rightarrow m\ne2\)
Do hiển nhiên \(1< 2\) nên \(x_1< x_2< 2\Rightarrow m-1< 2\)
\(\Rightarrow m< 3\)
\(\Rightarrow\left[{}\begin{matrix}m\ne2\\m< 3\end{matrix}\right.\)
Pt hoành độ giao điểm: \(x^2-2\left(m-2\right)x-5=0\)
\(\Delta'=\left(m-2\right)^2+5>0;\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}x_1x_2< 0\\x_1< x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2+2\right|=10\)
\(\Leftrightarrow-x_1+x_2+2=10\Leftrightarrow x_2-x_1=8\)
\(\Leftrightarrow\left(x_2-x_1\right)^2=64\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=64\)
\(\Leftrightarrow4\left(m-2\right)^2+20=64\)
\(\Leftrightarrow\left(m-2\right)^2=11\Rightarrow\left[{}\begin{matrix}m=2+\sqrt{11}\\m=2-\sqrt{11}\end{matrix}\right.\)