\(x^2\)

(d) y= 2(m-2)x+5\

Tìm để (d) cắt (P) tại hai điểm phân biệt có...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2021

Pt hoành độ giao điểm: \(x^2-2\left(m-2\right)x-5=0\)

\(\Delta'=\left(m-2\right)^2+5>0;\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)

Do \(\left\{{}\begin{matrix}x_1x_2< 0\\x_1< x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2+2\right|=10\)

\(\Leftrightarrow-x_1+x_2+2=10\Leftrightarrow x_2-x_1=8\)

 \(\Leftrightarrow\left(x_2-x_1\right)^2=64\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=64\)

\(\Leftrightarrow4\left(m-2\right)^2+20=64\)

\(\Leftrightarrow\left(m-2\right)^2=11\Rightarrow\left[{}\begin{matrix}m=2+\sqrt{11}\\m=2-\sqrt{11}\end{matrix}\right.\)

30 tháng 3 2019

Phương trình hoành độ giao điểm của (P) và (d) là :

\(x^2=2\left(m+3\right)x-m^2-3.\)

\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)

\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)

Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x; x2 thì phương trình (1) có hai nghiệm phân biệt xx2.

\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)

Theo vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)

Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.

\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)

\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)

\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)

\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)

Vậy \(m=5\).

1) Thay x=0;y=1 vào (d)=>m=2

Hoành độ giao điểm là nghiệm của phương trình:\(x^2=x+m-1\)

\(x^2-x-m+1=0\)2 điểm phân biệt => \(\Delta>0\)

\(\Delta>0=>1-4.\left(-m+1\right)=4m-3>0=>m>\frac{3}{4}\)

Áp dụng hệ thức Vi-ét:

\(x_1+x_2=1;x_1x_2=-m+1\)

\(4.\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0=>4.\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+3=0\)

\(\Rightarrow\frac{4}{-m+1}+m-1+3=0=>\frac{4}{-m+1}+m-2=0=>m^2-3m-2=0\)

Dùng công thức nghiệm được \(\Rightarrow x_1=\frac{3-\sqrt{17}}{2}\left(KTM\right);x_2=\frac{3+\sqrt{17}}{2}\left(TM\right)\)

Vậy...

29 tháng 1 2021

Phương trình hoành độ giao điểm:

\(x^2-\left(2m+1\right)x+m^2+m-6=0\left(1\right)\)

Ta có:

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25>0\forall m\)

\(\Rightarrow\) Phương trình (1) luôn có hai nghiệm phân biệt.

Theo định lí Vi-et \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-6\end{matrix}\right.\)

\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)

\(\Rightarrow\left|x_1-x_2\right|=5\)

Lại có:

\(x_1^2+x_2^2+x_1x_2=\left(x_1+x_2\right)^2-x_1x_2=\left(2m+1\right)^2-\left(m^2+m-6\right)=3m^2+3m+7\)

Khi đó \(\left|x_1^3-x_2^3\right|=50\)

\(\Leftrightarrow\left|x_1-x_2\right|\left(x_1^2+x_2^2+x_1x_2\right)=50\)

\(\Leftrightarrow5\left(3m^2+3m+7\right)=50\)

\(\Leftrightarrow m^2+m-1=0\)

\(\Leftrightarrow m=\dfrac{-1\pm\sqrt{5}}{2}\)

30 tháng 1 2021

Cảm ơn Hồng Phúc CTV 

yeuyeuyeu

NV
5 tháng 3 2019

Pt hoành độ giao điểm: \(x^2-mx-5=0\) (1)

Để (P) cắt d tại 2 điểm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt

Do \(a.c=1.\left(-5\right)=-5< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu

Theo Viet: \(x_1+x_2=m\)

\(\left\{{}\begin{matrix}x_1>x_2\\\left|x_1\right|< \left|x_2\right|\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\x_1^2< x_2^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\\left(x_1-x_2\right)\left(x_1+x_2\right)< 0\end{matrix}\right.\)

\(\Rightarrow x_1+x_2< 0\Rightarrow m< 0\)

Vậy \(m< 0\) thì pt có 2 nghiệm thỏa mãn

30 tháng 4 2020

*) xét pt hoành độ giao điểm của d và (P)

-x2=2x+m-1

<=> \(x^2+2x+m-1=0\left(1\right)\)

Có \(\Delta'=1-m+1=2-m\)

*) Để d giao với (P) tại 2 điểm phân biệt

<=> pt (1) có 2 nghiệm phân biệt \(x_1;x_2\)

<=> \(\Delta'>0\Leftrightarrow m< 2\)

*) áp dụng Vi-et \(\hept{\begin{cases}x_1+x_2=\frac{-b}{2a}=-1\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

*) Có: \(x_1^3-x_2^3+x_1x_2=4\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(5-m\right)=5-m\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)

\(\Rightarrow m-1=x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)

<=> \(m=\frac{7}{4}\)(tmđk m<2)

30 tháng 4 2020

Vừa nãy mình viết nhầm Vi-et. Mình làm lại

Xét pt hoành độ của d và (P) có:

\(-x^2=2x+m-1\)

\(\Leftrightarrow x^2+2x+m-1=0\left(1\right)\)

Có \(\Delta'=1-m+1=2-m\)

Để d cắt (P) tại 2 điểm phân biệt <=> pt (1) có 2 nghiệm phân biệt

<=> \(\Delta'>0\Leftrightarrow m< 2\)

Theo Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

Có \(x_1^3-x_2^3+x_1x_2=4\)

<=> \(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)

<=> \(\left(x_1-x_2\right)\left(5-m\right)=5-m\)

<=> \(\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)

=> m-1=\(x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)

<=> \(m=\frac{7}{4}\)(tmđk)