K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1 2021

\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)

\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)

Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT

\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)

- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)

Vậy \(x=1\)

12 tháng 10 2021

cc

15 tháng 12 2023

1: \(D=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{x^2-16}\)

\(=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{x-4+x\left(x+4\right)+24-x^2}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{-x^2+x+20+x^2+4x}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x+20}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{5\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5}{x-4}\)

2: Khi x=10 thì \(D=\dfrac{5}{10-4}=\dfrac{5}{6}\)

3: \(M=\left(x-2\right)\cdot D=\dfrac{5\left(x-2\right)}{x-4}\)

Để M là số nguyên thì \(5\cdot\left(x-2\right)⋮x-4\)

=>\(5\left(x-4+2\right)⋮x-4\)

=>\(5\left(x-4\right)+10⋮x-4\)

=>\(10⋮x-4\)

=>\(x-4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

=>\(x\in\left\{5;3;6;2;9;-1;14;-6\right\}\)

23 tháng 8 2020

\(B=\left(n+3\right)^2-\left(n-4\right)^2\)

\(=\left(n+3-n+4\right)\left(n+3+n-4\right)\)

\(=7\left(2n-1\right)\)

Dễ thấy B là số nguyên tố khi

\(2n-1=1\Leftrightarrow n=1\)

Vậy n = 1 thì B là số nguyên tố

9 tháng 3 2018

GIÚP MÌNH VỚI Ạ ! MAI MÌNH CẦN GẤP RỒI!

10 tháng 3 2018

Bạn k mik đi xong mình làm

3 tháng 5 2020

ai do tra loi di ma

4 tháng 7 2016

=(n3-n2)-(n+2)

=n2(n-1)-(n+2)=>n=1

12 tháng 10 2021

đéo

 

12 tháng 10 2021

áp dụng công thức là ra mà ?