Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
Ta có :
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=2012-2012\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)
Vì \(\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\right)\ne0\)
\(\Rightarrow\)\(x-2013=0\)
\(\Rightarrow\)\(x=2013\)
Vậy \(x=2013\)
Chúc bạn học tốt
\(A=\left|x-2012\right|+\left|x-2013\right|\\ A=\left|x-2012\right|+\left|2013-x\right|\)
Có: \(\left|x-2012\right|\ge x-2012\text{ với mọi }x\)
\(\left|2013-x\right|\ge2013-x\text{ với mọi }x\)
\(\Rightarrow\left|x-2012\right|+\left|2013-x\right|\ge x-2012+2013-x\text{ với mọi }x\\ \Rightarrow A\ge1\text{ với mọi }x\)
Vậy GTNN của A = 1
\("="\Leftrightarrow\left\{{}\begin{matrix}\left|x-2012\right|=x-2012\\\left|2013-x\right|=2013-x\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2012\ge0\\2013-x\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge2012\\x\le2013\end{matrix}\right.\\ \Leftrightarrow2012\le x\le2013\)
______________________________________
\(A=\left|x-1\right|+\left|x+2012\right|\\ A=\left|1-x\right|+\left|x+2012\right|\)
Có: \(\left|1-x\right|\ge1-x\text{ với mọi }x\)
\(\left|x+2012\right|\ge x+2012\text{ với mọi }x\)
\(\Rightarrow\left|1-x\right|+\left|x+2012\right|\ge1-x+x+2012\text{ với mọi }x\\ \Rightarrow A\ge2013\text{ với mọi }x\)
Vậy GTNN của A = 2013
\("="\Leftrightarrow\left\{{}\begin{matrix}\left|1-x\right|=1-x\\\left|x+2012\right|=x+2012\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+2012\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge-2012\end{matrix}\right.\\ \Leftrightarrow-2012\le x\le1\)
=20122011-2012.20122010+2012.20122009-.......................-2012.20122-1
còn lại tự làm nhá
Ta có:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right).x=\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{99}+\frac{2012}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right).x=2012.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
=> x = 2012
Mình ko hiểu đề , bạn có thể viết đề để mình làm được ko
đề là tìm GTNNN?
\(\left|x-2012\right|+\left|x-1\right|=\left|-x+2012\right|+\left|x-1\right|\ge\left|-x+2012+x-1\right|=2011\)
dấu = xảy ra khi \(\left(-x+2012\right).\left(x-1\right)\ge0\)
\(\Rightarrow1\le x\le2012\)
Vậy...