Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x+y\right)^2-8\left(x+y\right)+12\)
\(=\left[\left(x+y\right)^2-8\left(x+y\right)+16\right]-4\)
\(=\left(x+y-4\right)^2-4\)
\(=\left(x+y\right)\left(x+y-8\right)\)
a/ \(=\left(x^2-1\right)^2+x\left(x^2-1\right)-2x\left(x^2-1\right)-2x^2\)
\(=\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)\)
\(=\left(x^2-2x-1\right)\left(x^2+x-1\right)\)
b/ \(=4\left(x^2+x+1\right)^2+4x\left(x^2+x+1\right)+x\left(x^2+x+1\right)+x^2\)
\(=4\left(x^2+x+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)\)
\(=\left(x^2+2x+1\right)\left(4x^2+5x+4\right)\)
\(=\left(x+1\right)^2\left(4x^2+5x+4\right)\)
c/ \(=\left(x^2-x+2\right)^4-x^2\left(x^2-x+2\right)^2-2x^2\left(x^2-x+2\right)^2+2x^4\)
\(=\left(x^2-x+2\right)^2\left[\left(x^2-x+2\right)^2-x^2\right]-2x^2\left[\left(x^2-x+2\right)^2-x^2\right]\)
\(=\left[\left(x^2-x+2\right)^2-x^2\right]\left[\left(x^2-x+2\right)^2-2x^2\right]\)
\(=\left(x^2-2x+2\right)\left(x^2+2\right)\left[\left(x^2-x+2\right)^2-2x^2\right]\)
d/
Bạn coi lại đề, với hệ số này ko phân tích được
e/
\(=10\left(x^2-2x+3\right)^4-10x^2\left(x^2-2x+3\right)^2+x^2\left(x^2-2x+3\right)^2-x^4\)
\(=10\left(x^2-2x+3\right)^2\left[\left(x^2-2x+3\right)^2-x^2\right]+x^2\left[\left(x^2-2x+3\right)^2-x^2\right]\)
\(=\left[\left(x^2-2x+3\right)^2-x^2\right]\left[10\left(x^2-2x+3\right)^2+x^2\right]\)
\(=\left(x^2-3x+3\right)\left(x^2-x+3\right)\left[10\left(x^2-2x+3\right)^2+x^2\right]\)
a) (x - 2)(x + 2)(x2 + 4) - (x2 - 3)(x2+3)
= (x2 - 4)(x2 + 4) - (x2 - 3)(x2+3)
= x4-16-x4+9
= -7
1. P/tích làm sao đc
2. Bạn làm đúng rồi nhưng còn 1 cách:
từ \(\left(x-2\right)\left(x^2+6x+5\right)=\left(x-2\right)\left(\left(x^2+x\right)+\left(5x+5\right)\right)=\left(x-2\right)\left(x\left(x+1\right)+5\left(x+1\right)\right)=\left(x-2\right)\left(x+1\right)\left(x+5\right)\)
a: =x^2+2x-15-x^2+4
=2x-11
b: =x^2-4x+4+x^2+6x+9-2(x^2-1)
=2x^2+2x+13-2x^2+2
=2x+15
c: \(=x^2-4x+4+x^3-1-x^3+4x\)
=x^2+3
d: \(=\left(2x+5-2x+1\right)^2=6^2=36\)
e: \(=x^3+1-x^3+1-x^2=2-x^2\)
Bài 1:
a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-5+20x-4x^2-12x-9\)
\(=-30\)
b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
\(=-175\)
d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)
\(=-11x^2-32x+3-48+32x+11x^2-44\)
=-89
P = ( x - 2 )( x2 + 2x - 2 ) - ( x - 2 )2
= ( x - 2 )( x2 + 2x - 2 - x + 2 )
= x( x - 2 )( x + 1 )