Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì (x-1)^2 >/ 0 với mọi x
(y-1)^2 >/ 0 với mọi y
=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y
=>(x-1)^2+(y-1)^2+3 >/ 3
Do đó Amax=3
Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1
(y-1)^2 =0<=>y=1
câu 2a) xét (x-1)2> hoặc = 0
(x-1)2+(y+1)2> hoặc bằng 0
(x-1)2+(y+1)2+3> hoặc =3
=> GTNN của biểu thức trên là 3
Bài 1:
a) \(A=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{min}=-1\Leftrightarrow x=2\)
b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)
\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)
Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)
Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)
Ta có: \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)
\(\Rightarrow\) C không có giá trị lớn nhất
Vậy C không có giá trị lớn nhất
d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)
Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)
\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)
Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)
B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)
\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2
b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)
\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
B2:
a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)
\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2
b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)
\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)
a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)
Dấu " = " xảy ra khi
\(\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
Vậy \(x=-1\)khi \(GTNN=-3\)
B:C: tương tự
d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)
Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)
e) \(\left|-2x+6\right|\ge0\)
\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)
Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)
Vậy x = 3 khi đạt GTNN = 12
F ; G tương tự
hok tốt!!
+) A=(x+1)2 - 3
Vì (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0 \(\Leftrightarrow\)x = - 1
Vậy min A = - 3 khi x = -1
+) B=(2x-5)20 + 9
Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0 \(\Leftrightarrow\)x=\(\frac{5}{2}\)
Vậy min B=9 khi x=\(\frac{5}{2}\)
Những phần khác cũng làm tương tự :
+) minC= - 5 khi x=\(\frac{4}{3}\)
+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2
+) minE=12 khi x=3
+) min F = -17 khi x=5
+) min G = -12 khi x= - 4
A = (x - 2)2 + 3
Ta có \(\left(x-2\right)^2\ge0\) với mọi giá trị của x
=> \(\left(x-2\right)^2+3\ge3\)với mọi gt của x
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2=0\)
=> x - 2 = 0 => x = 2