K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

Bài 1 : Giải :

Vì : a chia cho 3 dư 1 => a + 2 \(⋮\)3

a chia cho 4 dư 2 => a + 2 \(⋮\)4

a chia cho 5 dư 3 => a + 2 \(⋮\)5

a chia cho 6 dư 4 => a + 2 \(⋮\)6

=> a + 2 \(\in\) BC( 3,4,5,6 )

3 = 3

4 = 22

5 = 5

6 = 2 .3

BCNN( 3,4,5,6 ) = 22 . 3 . 5 = 60

BC( 3,4,5,6 ) = { 0;60;120;180;... }

Mà : a nhỏ nhất => a + 2 nhỏ nhất

=> a + 2 = 60

=> a = 60 - 2 = 58

Vậy số tự nhiên cần tìm là 58

Bài 2 : Giải :

\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)

\(A=\frac{1.1.5.1.6.1.+1.2.5.2.6.2+1.4.5.4.6.4+1.9.5.9.6.9}{1.1.3.1.5.1+1.2.3.2.5.2+1.4.3.4.5.4+1.9.3.9.5.9}\)

\(A=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)

\(A=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)

Vậy : A = 2

Bài 3: Giải :

Quy đồng tử số , ta có :

\(\frac{6}{7}=\frac{6.3}{7.3}=\frac{18}{21};\frac{9}{11}=\frac{9.2}{11.2}=\frac{18}{22};\frac{2}{3}=\frac{2.9}{3.9}=\frac{18}{27}\)

=> \(\frac{18}{21}\) số thứ nhất = \(\frac{18}{22}\) số thứ hai và = \(\frac{18}{27}\) số thứ ba .

Hay : \(\frac{1}{21}\) số thứ nhất = \(\frac{1}{22}\) số thứ hai và = \(\frac{1}{27}\) số thứ ba .

Vậy coi số thứ nhất là 21 phần bằng nhau , số thứ hai là 22 phần bằng nhau thì số thứ ba là 27 phần bằng nhau như thế .

Tổng số phần bằng nhau là :

21 + 22 + 27 = 70

Số thứ nhất là :

210 : 70 . 21 = 63

Số thứ hai là :

210 : 70 . 22 = 66

Số thứ ba là :

210 - 63 - 66 = 81

Đáp số : ...

30 tháng 11 2016

Đúng rồi đó cậu! Giỏi thế?

31 tháng 3 2017

a) Gọi số tự nhiên nhỏ nhất cần tìm là a

Theo đề bài ta có: a=11x+6=4y+1=19z+11 (\(x;y;z\in N\))

=> a+27=11x+33=4y+28=19z+38 => a+27=11(x+3)=4(x+28)=19(z+2)

=>a+27 chia hết cho 11;4;19

Mà a nhỏ nhất => a+27 nhỏ nhất => a+27 = BCNN(11;4;19) => a+27=836 => a=809

Vậy số cần tìm là 809

31 tháng 3 2017

Ai làm xong đầu tiên minh k cho

23 tháng 2 2017

a) \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\) 

\(=\frac{2^{10}.\left(13.4+65.4\right)}{2^{10}.104}+\frac{3^9.\left(3.11+3.5\right)}{3^9.16}\)

\(=\frac{312}{104}+\frac{48}{16}\)

=3+3=6

b) \(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)

\(=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)

\(=\frac{1.5.6}{1.3.5}\)

\(=2\)

c) 1+2-3-4+5+6-7-8+...+2009+2010-2011-2012+2013

Nhận xét:Giá trị tuyệt đối của hai số liền nhau hơn kém nhau 1 đơn vị

=> Tổng trên có 2013-1+1=2013(Số hạng)

Nhóm 4 số vào một nhóm, ta được 2013:4=503 nhóm (thừa 1 số)

=>1+2-3-4+5+6-7-8+...+2009+2010-2011-2012+2013

=1+(2-3-4+5)+(6-7-8+9)+...+(2010-2011-2012+2013)

=1+0+0+...+0 (có 503 số 0)

=1+0.503

=1+0

=1 

27 tháng 5 2019

#)Giải :

\(A=\frac{44.66+34.41}{3+7+11+...+79}=\frac{2904+1394}{820}=\frac{4298}{820}=\frac{2149}{410}\)

\(B=\frac{1+2+3+...+200}{6+8+10+...+34}=\frac{20100}{300}=67\)

\(C=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}=\frac{5+12+24+54}{3+6+12+27}=\frac{95}{48}\)

                 #~Will~be~Pens~#

9 tháng 12 2014

Bài dễ nhưng bạn nên hỏi từng câu một

3 tháng 2 2015

Bài 4:

Gọi số cần tìm là a

Ta có a chia cho 3;5;7 có số dư lần lượt là 1;2;3 với a nhỏ nhất

Ta thấy nếu (a+2) thì chia hết cho 3;5;7

=> a+2 = BCNN(3;5;7)

Do đó a+2=3.5.7=105

Vậy a=103

 

22 tháng 4 2017

54444

10 tháng 3 2019

\(b.\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)

\(\Leftrightarrow\frac{35+9}{105}< \frac{x}{210}< \frac{60+63+35}{105}\)

\(\Leftrightarrow\frac{44}{105}< \frac{x}{210}< \frac{158}{105}\)

\(\Leftrightarrow\frac{88}{210}< \frac{x}{210}< \frac{316}{210}\)

Suy ra \(x\in\left\{89;90;100;...;313;314;315\right\}\)

\(c.\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{11}-\frac{1}{21}-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\frac{21-11-231x+221}{231}=\frac{308}{231}\)

\(\Leftrightarrow-231x=308-21+11-221\)

\(\Leftrightarrow-231x=77\)

\(\Leftrightarrow x=-\frac{77}{231}=-\frac{1}{3}\)

^^

12 tháng 9 2021

a ) 

Theo bài ra: (a - 4) chia hết cho 5 => (a - 4) + 20 chia hết cho 5 => a + 16 chia hết cho 5

(a - 5) chia hết cho 7 => (a - 5) + 21 chia hết cho 7 => a + 16 chia hết cho 7

(a - 6) chia hết cho 11 => (a - 6) + 22 chia hết cho 11 => a + 16 chia hết cho 11 

=> a + 16 thuộc BC(5; 7; 11) 

Mà BCNN(5; 7; 11) = 385

=> a + 16 thuộc B(385) = {0; 385; 770; ...}

=> a thuộc {-16; 369; 754;...}

Vì a là số tự nhiên nhỏ nhất

=> a = 369 

b ) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.\)

Ta có : 

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

.....................

\(\frac{1}{2012^2}=\frac{1}{2012.2012}< \frac{1}{2011.2012}\)

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.< \frac{2011}{2012}\)

Mà \(\frac{2011}{2012}< 1\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)

12 tháng 9 2021

\(b)\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)

\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)

\(< \)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(< \)\(1-\frac{1}{2012}\)\(=\frac{2011}{2012}< 1\)

Vậy Biểu thức    \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< 1\)

Bài tập 1:a) Tìm các chữ số a, b để  a183b  chia 2, 5 và 9 đều dư 1b) Tìm tất cả các số B =  62xy427  ; biết rằng B chia hết cho 9c) Tìm các chữ số x, y để  1x8y2  chia hết cho 36d) Cho A =  aaaaaaa48  . Tìm a để số đó chia hết cho 24 Bài tập 2:a) Tìm số tự nhiên n biết rằng khi chia 75 cho n thì dư 3, còn chia 64 cho n thì dư 10b) Tìm số tự nhiên n biết rằng khi chia 39 cho n thì dư 4, còn chia...
Đọc tiếp

Bài tập 1:

a) Tìm các chữ số a, b để  a183b  chia 2, 5 và 9 đều dư 1

b) Tìm tất cả các số B =  62xy427  ; biết rằng B chia hết cho 9

c) Tìm các chữ số x, y để  1x8y2  chia hết cho 36

d) Cho A =  aaaaaaa48  . Tìm a để số đó chia hết cho 24

 

Bài tập 2:

a) Tìm số tự nhiên n biết rằng khi chia 75 cho n thì dư 3, còn chia 64 cho n thì dư 10

b) Tìm số tự nhiên n biết rằng khi chia 39 cho n thì dư 4, còn chia 48 cho n thì dư 6

c) Tìm số tự nhiên n biết rằng 1960 và 2002 chia cho a có cùng số dư là 28

 

Bài tập 3:

a) Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 29 dư 5, chia cho 31 dư 28
b) Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 120 dư 58, chia cho 135 dư 88

 

Bài tập 4:

a) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4, và chia hết cho 11

b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11

c) Tìm số tự nhiên có 4 chữ số biết rằng khi chia số đó cho các chữ số 30; 39; 42 thì được số dư lần lượt là 11; 20; 33

d) Tìm số tự nhiên chia cho 4 dư 3, chia cho 17 dư 9, chia cho 19 dư 13 biết rằng số đó lớn hơn 1200 và nhỏ hơn 1300

 

Bài tập 5:

a) Một số tự nhiên chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem số đó chia 91 thì dư bao nhiêu?

b) Một số tự nhiên chia cho 4 dư 3, chia cho 17 dư 9. Nếu đem số đó chia 1292 thì dư bao nhiêu?

 

Bài tập 6: Cho x, y, z là các số nguyên. Chứng minh rằng: Nếu 100x + y + z chia hết cho 21 thì x - 2y + 4z cũng chia hết cho 21

 

Bài tập 7: Chứng minh rằng nếu một số có 3 chữ số mà chữ số hàng chục và hàng đơn vị giống nhau v đồng thời tổng các chữ số của nó chia cho 7 thì số đó chia hết cho 7

 

Bài tập 8: Tìm số tự nhiên có 3 chữ số biết rằng b2 = ac và abc - cba = 405

 

Bài tập 9: Cho ababab là số có 6 chữ số. Chứng minh rằng: ababab là bội của 3

 

Bài tập 10: Chứng tỏ 9815 - 1 = chia hết  cho 97

 

Bài tập 11: Tìm chữ số tận cùng của các số sau:

a) 931909 
b) 571999

c) Cho A = 999993 - 555551997 

Chứng minh A chia hết 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
22 tháng 2 2019

Dài wá bạn ơi

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}