K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

A = 1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98

A = 1/3 . ( 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98 )

A = 1/3 . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98 )

A = 1/3 . ( 1/2 - 1/98 )

A = 1/3 . 24/49

A = 8/49

20 tháng 4 2020

1234567890

6 tháng 8 2021

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}.\frac{24}{49}\)

\(A=\frac{8}{49}\)

Vậy ...........

14 tháng 9 2020

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)

=> 3A = \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)

=> 3A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)

=> 3A = \(\frac{1}{2}-\frac{1}{98}\)

=> 3A = \(\frac{24}{49}\)

=> A = \(\frac{8}{49}\)

14 tháng 9 2020

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)

\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)

Sửa 95.98 thành 1/(95.98) nhá

28 tháng 7 2021

Ta có:\(A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{11}+...+\dfrac{31}{92}-\dfrac{32}{95}+\dfrac{32}{95}-\dfrac{33}{98}\)

                \(=\dfrac{1}{2}+\dfrac{33}{98}=\dfrac{82}{98}=\dfrac{41}{49}\)

=1/3(3/2*5+3/5*8+...+3/95*98)

=1/3(1/2-1/5+1/5-1/8+...+1/95-1/98)

=1/3*96/196

=32/196

=8/49

12 tháng 6 2020

\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)

\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)

\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)

\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)

\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)

\(\Leftrightarrow\left(x-101\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow x-101=0\)

\(\Leftrightarrow x=101\)

\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)

\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)

\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)

\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}-\frac{100}{99}-\frac{99}{98}-\frac{96}{95}=0\)

\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)

\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)

\(\Leftrightarrow\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)

Do \(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\ne0\)

Mà \(x-101=0\Leftrightarrow x=101\)

Vậy x = 101 

12 tháng 5 2019

\(A=\frac{2}{2\cdot5}+\frac{2}{5\cdot8}+\frac{2}{8\cdot11}+...+\frac{2}{92\cdot95}+\frac{2}{95\cdot98}\)

\(A=\frac{2}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right]\)

\(A=\frac{2}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right]\)

\(A=\frac{2}{3}\left[\frac{1}{2}-\frac{1}{98}\right]=\frac{2}{3}\left[\frac{49}{98}-\frac{1}{98}\right]=\frac{2}{3}\cdot\frac{48}{98}=\frac{2}{3}\cdot\frac{24}{49}=\frac{2}{1}\cdot\frac{8}{49}=\frac{16}{49}\)

12 tháng 5 2019

\(A=\frac{2}{2.5}+\frac{2}{5.8}+...+\frac{2}{92.95}+\frac{2}{95.98}\)

\(=\frac{2}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)

\(=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)

\(=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(=\frac{2}{3}.\frac{24}{49}\)

\(=\frac{16}{49}\)

26 tháng 4 2019

       \(\frac{2x+1}{4-x}=\frac{x-1}{5}\)

\(\Rightarrow\)\(5.\left(2x+1\right)=\left(4-x\right).\left(x-1\right)\)

\(\Rightarrow\)\(10x+5=2x-4\)

\(\Rightarrow\)\(10x-2x=-4-5\)

\(\Rightarrow\)\(8x=-9\)

\(\Rightarrow\)\(x=-\frac{9}{8}\)