Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)+\left(1+\frac{1}{2}+...+\frac{1}{2^{10}}\right)\)
\(2S-S=S=2-\frac{1}{2^{10}}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(2S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(S=2S-S\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(S=2-\frac{1}{2^{10}}\)
Ta có :
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{2^{10}.3-3}{2^9}\)
Vậy \(S=\frac{2^{10}.3-3}{2^9}\)
vận dụng 3S lên
xong tìm S nha bn ok
tại k có thời gian nên chỉ giúp thế thôi
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
=> 2S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> 2S - S = ( \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\) ) - ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\))
S = 1 - \(\frac{1}{2^{10}}\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
=> \(S=1-\frac{1}{2^{10}}\)
Study well ! >_<
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
=>\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
=>\(S=1-\frac{1}{2^9}=\frac{511}{512}\)
Vậy \(S=\frac{511}{512}\)
Ta có : \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^9}\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^8}\)
\(\Rightarrow2S-S=1-\frac{1}{2^9}\)
\(\Leftrightarrow S=1-\frac{1}{2^9}\)
\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2017}\)
\(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2017.2018}\)
\(\frac{1}{2}S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{2018}\)
\(\frac{1}{2}S=\frac{504}{1009}\)
=> \(S=\frac{1008}{1009}\)
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(2S=1+\frac{1}{2}+\frac{1}{2^2}...+\frac{1}{2^9}\)
\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\)
\(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)
\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\right)\)
\(=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)