Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}-\left(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+\frac{1}{180}+\frac{1}{270}+\frac{1}{378}\right)\)
\(=\frac{1}{3}-\left(\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{12.15}+\frac{1}{15.18}+\frac{1}{18.21}\right)\)
\(=\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=\frac{1}{3}-\frac{1}{3}+\frac{1}{21}=\frac{1}{21}\)
Mk làm lun nhé
a) =>-5*9=15*2x b) =>4/8x=-11/2-7/3 c) =>-1/4+-4/13:x=-5 d) =>x(3+7/3)=1/5
=>-45=15*2x =>4/8x=-47/6 =>-4/13:x=-19/4 =>16/3x=1/5
=>2x=-3 =>x=-47/3 =>x=16/247 =>x=3/80
=>x=-3/2
Đặt \(S=\frac{A}{B}\)
Biến đổi B
\(B=\frac{108}{1}+\frac{107}{2}+...+\frac{1}{108}\)
\(=\left(\frac{108}{1}+1\right)+\left(\frac{107}{2}+1\right)+...+\left(\frac{1}{108}+1\right)-108\)
\(=109+\frac{109}{2}+...+\frac{109}{108}-108\)
\(=109+\frac{109}{2}+...+\frac{109}{108}+\frac{109}{109}-109\)
\(=109.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{109}\right)\)
\(\Rightarrow s=\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{109}}{109.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{109}\right)}=\frac{1}{109}\)
KO hiểu em hỏi nhé
Em ko cần đặt \(S=\frac{A}{B}\)cũng được nhé tại vì anh có thói quen đặt
\(N=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)
=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)
=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{10}{33}\)
\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4970}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{70.71}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{70}-\frac{1}{71}\)
\(M=1-\frac{1}{71}\)
\(M=\frac{70}{71}\)
\(N=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(N=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(N=\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)\)
\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(N=\frac{1}{3}.\frac{10}{33}\)
\(N=\frac{10}{99}\)
\(B=1.\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{3}.\frac{1}{4}+...+\frac{1}{8}.\frac{1}{9}.\frac{1}{10}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(B=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(B=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\)
\(B=\frac{1}{2}.\frac{22}{45}\)
\(B=\frac{11}{45}\)
\(B=1.\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{3}.\frac{1}{4}+....+\frac{1}{8}.\frac{1}{9}.\frac{1}{10}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(B=\frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(B=\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=\frac{1}{2}.\left(1-\frac{1}{10}\right)\)
\(B=\frac{1}{2}.\frac{9}{10}\)
\(B=\frac{9}{20}\)
=\(\frac{85}{504}\)
\(\frac{85}{504}\)