Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có A = 4 + 2 2 + 2 3 + 2 4 +. . . + 2 20
=>A=1+1+2+22+ 2 3 + 2 4 +. . . + 2 20
Gọi 1+2+22+ 2 3 + 2 4 +. . . + 2 20 là B
có B=1+2+22+ 2 3 + 2 4 +. . . + 2 20
=>2B=2+22+23+24+25+....+221
2B-B=(2+22+23+24+25+....+221)-(1+2+22+ 2 3 + 2 4 +. . . + 2 20 )
B=221-1
Có A=1+B
mà B=221-1
=>A=221-1+1
A=221
\(a.\) \(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.3^2.2^2+3^3}{-13}=\frac{2^3.3^3+3^3.2^2+3^3}{-13}\)
\(=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\frac{3^3.\left(-1\right)}{1}=-27\)
\(b.\)\(A=2^2+4^2+6^2+...+20^2=2^2\left(1+2^2+3^2+...+10^2\right)\)
\(A=2^2.\frac{10.\left(10+1\right).\left(2.10+1\right)}{6}=4.385=1540\)
( Ta có: công thức tính tổng bình phương liên tiếp tứ 1 đến n là: \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\))
\(c.\)\(B=100^2+200^2+...+1000^2=\left(100.1\right)^2+\left(100.2\right)^2+...+\left(100.10\right)^2\)
\(B=100^2.1^2+100^2.2^2+...+100^2.10^2=100^2.\left(1^2+2^2+...+10^2\right)\)
Áp dụng công thức \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có: \(B=100^2\times385=3,850,000\)
\(\left(2^3.9^8.5\right):\left(9^2.\left(10-1\right)\right)\)
\(=2^3.9^8.5:9^3\)
\(=2^3.9^5.5\)
\(\left(2^3.9^4.9^3.45\right):\left(9^2.10-9^2\right)\)
(=) \(\left(2^3.3^8.3^6.5.3^2\right):9^2\left(10-1\right)\)
(=) \(\left(2^3.3^{15}.5\right):3^4.3^2\)
(=) \(2^3.3^9.5\)
Đặt \(A=\frac{3^2\cdot4^2\cdot2^{32}}{11\cdot2^{13}\cdot4^{11}-16^9}\)
\(A=\frac{3^2\cdot\left(2^2\right)^2\cdot2^{32}}{11\cdot2^{13}\cdot\left(2^2\right)^{11}-16^9}\)
\(A=\frac{3^2\cdot2^4\cdot2^{32}}{11\cdot2^{13}\cdot2^{22}-16^9}=\frac{3^2\cdot2^{36}}{11\cdot2^{35}-\left(2^4\right)^9}\)
\(A=\frac{3^2\cdot2^{36}}{11\cdot2^{35}-2^{36}}\)
\(A=\frac{3^2\cdot2^{36}}{11\cdot2^{35}-2\cdot2^{35}}\)
\(A=\frac{3^2\cdot2^{36}}{\left(11-2\right)\cdot2^{35}}=\frac{9\cdot2^{36}}{9\cdot2^{35}}=\frac{2^{36}}{2^{35}}=2\)
Bài làm:
\(\frac{3^2.4^2.2^{32}}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3^2.\left(2^2\right)^2.2^{32}}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(=\frac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}\)
\(=\frac{3^2.2^{36}}{\left(11-2\right).2^{35}}\)
\(=\frac{9.2^{36}}{9.2^{35}}\)
\(=2\)
Học tốt
Vì câu a có dấu x mk ko hiểu nên mk làm câu b nhé:
có 12 - 22 = -3
32 - 42 = -7
...................
992 - 1002 = -199
vậy chúng cách nhau 4 đơn vị
⇒ -((199 + 3).((199 - 3):4 + 1):2))) = -5050 vậy A = -5050
A=4+22 +23+24+....220
A=22+22 +23 +24 +....220
2A=2(4+22 +23 +24 +....220)
2A=23+23 +24 +25 +....221
2A-A=(23+23 +24 +25 +....221)-(22+22 +23 +24 +....220)
A=23+221-(22+22)
A=8+221 - 8
A=221
Vậy A= 221
\(A = 1 + 4 + 4^2 + ... + 4\)\(20\)
\(4A = 4 + 4^2 + 4^3 + ...+ 4\)\(21\)
\(4A - A = ( 4+ 4^2 + 4^3 + ... + 4\)\(21\)\()\)\(- ( 1 + 4 + 4^2 + ... + 4\)\(20\) \()\)
\(3A = 2\)\(21\) \(- 1\)
\(\Leftrightarrow\)\(3A + 1 = 2\)\(21\)\(= ( 2^3)^7\)\(= 8^7\)
\(Ta có : 8^7 < 63^7 \)
\(Nên 3A + 1 < 63^7\)
Vì A= 4^0 + 4^1 + 4^2+ 4^3+....+4^20
Suy ra: 4A= 4^1+4^2+4^3+4^4+......+ 4^21
Suy ra:4A-A= 4^21 - 4^0
Suy ra: 3A = 4^21-1
Suy ra: A= (4^21-1) : 3
Suy ra: 3A+1= 3. [ ( 4^21-1) : 3] +1
Suy ra: 3A+1 = ( 4^21-1)+1
Suy ra: 3A + 1 = 4^21= (4^3)^7=64^7
Vì 64 > 63; 7=7
Suy ra: 64^7 > 63^7 hay 3A+1 > 63^7