Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1/2. ( 1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +........+ 1/2013 - 1/2015)
= 1/2 . ( 1- 1/2015)
= 1007/2015
\(M=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(\Rightarrow M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(\Rightarrow2M=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(\Rightarrow2M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow2M=\frac{1}{3}-\frac{1}{51}\)
\(\Rightarrow2M=\frac{16}{51}\)
\(\Rightarrow M=\frac{8}{51}\)
\(N=\frac{-5}{1.3}+\frac{-5}{3.5}+...+\frac{-5}{2013.2015}\)
\(\Rightarrow N=-\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)
\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{2015}\right)\)
\(\Rightarrow N=-\frac{5}{2}.\frac{2014}{2015}\)
\(\Rightarrow N=-\frac{1007}{403}\)
Q = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
Q = \(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{2013.2015}\right)\)
Q = \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2015}\right)\)
Q = \(\frac{1}{2}.\frac{2012}{6045}=\frac{1002}{6045}\)
\(Q=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\)
\(\Rightarrow Q.2=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\right)\)
\(\Rightarrow Q.2=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\)
\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{2015}\)
\(\Rightarrow Q.2=\frac{2012}{6045}\)
\(\Rightarrow Q=\frac{2012}{6045}.\frac{1}{2}=\frac{1006}{6045}\)
Mk tinh nhẩm, nên ko bt kết quả có đúng ko
nên bn thử tính lại kết quả nha!!!
Chúc bn hok tốt!!!
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
\(\Rightarrow A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\Leftrightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(\Leftrightarrow2A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}\)
\(\Leftrightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(\Leftrightarrow2A=1-\frac{1}{99}\)
\(\Leftrightarrow2A=\frac{99}{99}-\frac{1}{99}\)
\(\Leftrightarrow2A=\frac{98}{99}\)
\(\Leftrightarrow A=\frac{98}{99}\div2\)
\(\Leftrightarrow A=\frac{49}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97+99}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(A=\left(1-\frac{1}{99}\right)+\left(-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}\right)\)
\(A=\frac{98}{99}+0\)
\(A=\frac{98}{99}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)
\(A=\frac{1}{2}.\frac{2012}{2013}\)
\(A=\frac{1006}{2013}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)
\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2013}\right)\)
\(A=\frac{1}{2}.\frac{2012}{2013}\)
\(A=\frac{1006}{2013}\)