Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(|5x-3|=|7-x|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=x-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
Vậy...
2) \(2.|3x-1|-3x=7\)
\(\Leftrightarrow2.|3x-1|=7+3x\)
\(\Leftrightarrow\orbr{\begin{cases}2.\left(3x-1\right)=7+3x\\2.\left(3x-1\right)=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x-2=7+3x\\6x-2=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=9\\9x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{9}\end{cases}}\)
Vậy...
a) -4/5 + 5/2x = -3/10
5/2x = -3/10 + 4/5
5/2x = 1/5
5/2x = 1/2
x = 1/2 : 5/2
x = 1/5
b) 4/3 + 5/8 : x = 1/12
5/8x = 1/12 - 4/3
5/8x = -5/4
5 = -5/4.8x
5 = -10x
5/-10 = x
-1/2 = x
x = -1/2
c) (x - 1/3)(x - 2/5) = 0
x - 1/3 = 0 hoặc x - 2/5 = 0
x = 0 + 1/3 x = 0 + 2/5
x = 1/3 x = 2/5
Bài 3:
Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))
=> a = 9.1 = 9
Ta có: x2 = 9 và y2 = 1
=> x = -3, 3
y = -1; 1
Mình làm bài 4, bài 5 làm tương tự bài 4 nhé
Biết rằng: \(\left|A\right|\ge A\)
\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)
Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)
Với x = 5 thì A đạt gtnn là: 4
Bài 3:
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\\dfrac{3}{4}x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}3x+2>0\\\dfrac{2}{3}x-5< 0\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< \dfrac{15}{2}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x+2=0\\\dfrac{2}{5}x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{3}{4}=-2\\\dfrac{2}{5}x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=6:\dfrac{2}{5}=15\end{matrix}\right.\)
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)
=> \(\frac{2}{3}x=-\frac{29}{70}\)
=> \(x=-\frac{29}{70}:\frac{2}{3}\)
=> \(x=-\frac{29}{70}.\frac{3}{2}\)
=> \(x=-\frac{87}{140}\)
b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
=> \(-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
=> \(-\frac{21}{13}x=-\frac{3}{3}\)
=> \(-\frac{21}{13}x=1\)
=> \(x=1:\left(-\frac{21}{13}\right)\)
=> \(x=-\frac{13}{21}\)
c) \(\left|x-1,5\right|=2\)
=> \(\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.=>\left[{}\begin{matrix}x=2+1,5\\x=-2+1,5\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)(T/M)
d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
=> \(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
=> \(=>\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{1}{2}-\frac{3}{4}\\x=-\frac{1}{2}-\frac{3}{4}\end{matrix}\right.=>\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{matrix}\right.\)(T/M)
HỌC TỐT
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{29}{70}\)
\(\Leftrightarrow x=-\frac{29}{70}:\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{87}{140}\)
b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
\(\Leftrightarrow-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
\(\Leftrightarrow-\frac{21}{13}x=-1\)
\(\Leftrightarrow x=-1:\left(-\frac{21}{13}\right)\)
\(\Leftrightarrow x=\frac{13}{21}\)
c) \(\left|x-1,5\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)
d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=\frac{5}{4}\end{matrix}\right.\)
1.
b) \(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\)
Ta có:
\(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\ge\left(\left|x+8\right|+\left|-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left(\left|x+8-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left|-42\right|+\left|x+18\right|\)
\(\Rightarrow B=42+\left|x+18\right|\ge42\)
\(\Rightarrow MIN_B=42\) khi và chỉ khi:
\(\left\{{}\begin{matrix}x+8\ge0\\x+18=0\\x+50\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-18\\x\ge-50\end{matrix}\right.\Rightarrow x=-18.\)
Vậy \(MIN_B=42\) khi \(x=-18.\)
3.
b) \(\left|x-3\right|-\left|2x+1\right|=0\)
\(\Rightarrow\left|x-3\right|=\left|2x+1\right|\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2x=1+3\\x+2x=\left(-1\right)+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=4\\3x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4:\left(-1\right)\\x=2:3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-4;\frac{2}{3}\right\}.\)
Chúc bạn học tốt!
1: =>1/3:x=3/5-2/3=9/15-10/15=-1/15
=>x=-1/3:1/15=5
2: \(\Leftrightarrow x\cdot\dfrac{2}{3}-3=\dfrac{2}{5}\cdot\left(-10\right)=-4\)
=>x*2/3=-1
=>x=-3/2
3: \(\Leftrightarrow\dfrac{8}{3}:x=\dfrac{25}{12}:\dfrac{-3}{50}=\dfrac{25}{12}\cdot\dfrac{-50}{3}\)
hay x=-48/625
9: =>x=-2*3/1,5=-4
8: =>2/3:x=5/2:-3/10=5/2*(-10)/3=-50/6=-25/3
=>x=-2/3:25/3=-2/3*3/25=-2/25