Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là a
Ta có : số đó chia 3 dư 2 , chia 4 dư 3 , chia 5 dư 4 , chia 10 dư 9
\(\Rightarrow a+1⋮3;4;5;10\)
hay \(a+1\in BC\left(3;4;5;10\right)\)
\(BCNN\left(3;4;5;10\right)=60\)
\(a+1\in BC\left(3;4;5;10\right)=B\left(60\right)=\left\{0;60;120;...\right\}\)
\(\Rightarrow a=\left\{-1;59;119;...\right\}\)
mà a > 0 và a là số tự nhiên nhỏ nhất
\(\Rightarrow a=59\)
Vậy số tự nhiên đó là 59
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
tick nha
câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)
câu .2
a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có
\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)
b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có
\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)
c. ta có \(a+b=a-3+b-4+7\)
ta có a-3 và b-4 chia hết cho 5 còn 7 chia 5 dư 2
vậy a+b chia 5 dư 2..
mình thấy bài này mấy lần rồi,,nhưng mình lại quên đáp án zùi
hay bạn thử vào gõ ý
gọi số cần tìm là a.ta có:a=4n+3
=17m+9
=19k+13
\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)
\(=17m+9+25=17m+34=17\left(m+2\right)⋮17\)
\(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)
\(\Rightarrow a+25⋮17,4,19\)
\(\Rightarrow a+25⋮1292\)
\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)
do 1267<1292 nên số dư của phép chia là 1267
2,
gọi ƯCLN[2n+1,2n(n+1)] là d
\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)
\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)
\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)
\(\Rightarrow n⋮d\)
MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
suy ra đpcm