Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-3x-15}{-2x}=3\)
mà âm chia âm bằng dương
=>\(\frac{-3x-15}{-2x}=\frac{-\left(3x+15\right)}{-\left(2x\right)}=\frac{3x+15}{2x}=3\)
\(\frac{3x}{2x}+\frac{15}{2x}=3\)=>\(\frac{3}{2}+\frac{15}{2x}=3\)
\(15:2x=3-\frac{3}{2}=\frac{6-3}{2}=\frac{3}{2}\)
\(15.\frac{1}{2}x=\frac{3}{2}\)=>\(\frac{15}{2}x=\frac{3}{2}\)
\(x=\frac{3}{2}:\frac{15}{2}=\frac{3}{2}.\frac{2}{15}=\frac{1}{5}\)
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
Bài 1
\(\left(\frac{1}{2}-x\right)^2=\frac{4}{9}\)
\(\Leftrightarrow\left(\frac{1}{2}-x\right)^2=\left(\frac{2}{3}\right)^2\)
\(\Leftrightarrow\frac{1}{2}-x=\frac{2}{3}\)
\(\Leftrightarrow\frac{3}{6}-\frac{4}{6}=x\)
\(\Leftrightarrow x=\frac{-1}{6}\)
Bài 2
Để \(\frac{2x+1}{x-1}\in Z\)
\(\Leftrightarrow\frac{2X-2+3}{X-1}\in Z\)
\(\Leftrightarrow2+\frac{3}{X-1}\in Z\)
\(\Rightarrow3⋮X-1\)
\(\Rightarrow X-1\inƯ\left(3\right)\)
\(\Rightarrow X-1=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow X=\left\{-2,0,2,4\right\}\)