Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì q=a2q=a2 nên ta có : q=1;4,9q=1;4,9
Với q=1q=1 ta có : abcd¯¯¯¯¯¯¯¯¯¯=dcba¯¯¯¯¯¯¯¯¯¯→a=b=c=dabcd¯=dcba¯→a=b=c=d
Mà abcd¯¯¯¯¯¯¯¯¯¯abcd¯ có dạng bình phương 1 số nguyên nên ta thử với các số có dạng xxxx¯¯¯¯¯¯¯¯¯¯¯=y2 (y∈Z)xxxx¯=y2 (y∈Z). Phương trình này vô nghiệm nên trường hợp này loại.
Với q=4q=4 ta có : abcd¯¯¯¯¯¯¯¯¯¯=4dcba¯¯¯¯¯¯¯¯¯¯abcd¯=4dcba¯
Có d chẵn, a≥9a≥9 nên d=2→a=8;9d=2→a=8;9
Tiếp tục thử với a=8; a=9a=8; a=9 bằng cách tách số hạng ta không tìm được số nào thỏa mãn.
Với q=9q=9 ta có a=9; d=1a=9; d=1 Tách tương tự không tìm được số nào thỏa mãn.
Nếu có chắc thử sai nhưng hướng làm là thế
(gt) <=> 38 + c + d chia hết cho 5
nên A = 38 + c + d phải có chữ số tận cùng là 0 hoặc 5
vì c,d là các chữ số => 0 =< c,d < 10
=> A = 38 + c + d < 58
=> A thuộc {40;45;50;55} (do A chia hết cho 5)
=> c + d = {2;7;12;17}
Q = 65c3596d4
*Điều kiện cần và đủ(thử lại)
Q tận cùng là 4 nên số hàng chục phải là số chẵn
d thuộc {2;4;6;8}
d = 2 => c thuộc {0;5}, thử c => loại
d = 4 => c thuộc {3;8}, thử c => loại
d = 6 => c thuộc {1;6}, thử c => loại
d = 8 => c thuộc {4;9}, thử c => nhận giá trị c = 9
Vậy có 1 nghiệm thỏa là : c = 9; d = 8 khi đó Q = 659359684 = 25678^2
Nguồn: Yahoo
do a chính phương nên a = 1,4 hoặc 9.Do đó \(\overline{ad}\) bằng 16 hya 49.
suy ra \(\overline{cd}\) bằng 16,36 hay 49.từ những điều này ta có a=1 hoặc a=4.vậy \(\overline{abcd}\) có dạng \(\overline{1b16},\overline{1b36},\overline{1b49},\overline{4b16},\overline{4b36},\overline{4b49}\) trong này chỉ có 1936 là số chính phương.
Vậy,...