Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x-8\right)\left(\frac{1}{2}-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x-8=0\\\frac{1}{2}-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{1}{2}\end{array}\right.\)
b) \(2x^2-32=0\)
\(\Leftrightarrow2\left(x^2-16\right)=0\)
\(\Leftrightarrow x^2-16=0\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-4\end{array}\right.\)
\(a,\left(4x-8\right)\left(\frac{1}{2}-x\right)=0\)
\(\Leftrightarrow4\left(x-2\right)\left(\frac{1}{2}-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\\frac{1}{2}-x=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{1}{2}\end{array}\right.\)
\(b,2x^2-32=0\)
\(\Leftrightarrow2\left(x^2-16\right)=0\)
\(\Leftrightarrow x^2-16=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x+4=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-4\end{array}\right.\)
tìm nghiệm của đa thức sau:
a,\(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\)
Xét \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) \(=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3}x^2+\dfrac{3}{5}=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3x}x^2=-\dfrac{3}{5}\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=\dfrac{9}{25}\\\left[{}\begin{matrix}x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{9}{25}\\x=-\dfrac{9}{25}\end{matrix}\right.\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy nghiệm của đa thức \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) là \(\left\{\dfrac{9}{25};-\dfrac{9}{25};\sqrt{2};-\sqrt{2}\right\}\)
\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)
Hệ số 3/5
\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)
Hệ số 4
Làm nốt b Quỳnh đag lm dở.
Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)
\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)
\(P\left(x\right)=x^2-2\)
Ta có : \(P\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
a) \(\left(2x+3\right)^2=\frac{9}{144}\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x+3=\frac{1}{4}\\2x+3=\frac{-1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{-11}{4}\\2x=\frac{-13}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-11}{8}\\x=\frac{-13}{8}\end{cases}}}\)
Vậy ...
b) Ta có: \(\left(3x-1\right)^3=\frac{-8}{27}=\left(\frac{-2}{3}\right)^3\)
\(\Leftrightarrow3x-1=\frac{-2}{3}\Leftrightarrow3x=\frac{1}{3}\Leftrightarrow x=\frac{1}{9}\)
Vậy ....
c) \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25\Leftrightarrow x=\left\{5;-5\right\}\)
Vậy ...
d) \(\frac{x^7}{81}=27\Leftrightarrow x^7=27.81=2187\)
Mà 37 = 2187 => x7 = 37 => x = 3
Vậy ....
e) \(\frac{x^8}{9}=729\Leftrightarrow x^8=729.9=6561\)
Mà 38 = (-3)8 = 6561
=> x8 = 38 = (-3)8
=> x = {-3;3}
Vậy ...
a) A + B
\(=4x^5-7y^2+2xy-x-5y-\frac{1}{4}+6x^5-2y^2+3x-\frac{1}{6}y+6\)
\(=\left(4x^5+6x^5\right)-\left(7y^2+2y^2\right)+2xy+\left(3x-x\right)-\left(5y+\frac{1}{6}y\right)+\left(6-\frac{1}{4}\right)\)
\(=10x^5-9y^2+2xy+2x-\frac{31}{6}y+\frac{23}{4}\)
A - B
\(=4x^5-7y^2+2xy-x-5y-\frac{1}{4}-6x^5+2y^2-3x+\frac{1}{6}y-6\)
\(=\left(4x^5-6x^5\right)+\left(2y^2-7y^2\right)+2xy-\left(x+3x\right)+\left(\frac{1}{6}y-5y\right)-\left(\frac{1}{4}+6\right)\)
\(=-2x^5-5y^2+2xy-2x-\frac{29}{6}y-\frac{25}{4}\)
Bài 2
\(a,\left(x-3\right)^2=9\Leftrightarrow\left(x-3\right)^2=3^2\Leftrightarrow x-3=3\Leftrightarrow x=6\)
\(b,\left(\frac{1}{2}+x\right)^2=16\Leftrightarrow\left(\frac{1}{2}+x\right)^2=4^2\Leftrightarrow\frac{1}{2}+x=4\Leftrightarrow x=\frac{7}{2}\)
a) (4x - 8)(1/2 - x) = 4(x - 2)(1/2 - x) = 0 => x - 2 = 0 hoặc 1/2 - x = 0 =>x = 2 ; 1/2
b) 2x2 - 32 = 2(x2 - 42) = 2(x - 4)(x + 4) = 0 => x - 4 = 0 hoặc x + 4 = 0 => x = 4 ; -4 (cách lớp 8 - áp dụng hằng đẳng thức đáng nhớ)
2x2 - 32 = 0 => 2x2 = 32 => x2 = 16 => x = -4 ; 4 (cách lớp 6 & 7)
\(\left(4x-8\right)\left(\frac{1}{2}-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-8=0\\\frac{1}{2}-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{8}{4}=2\\x=\frac{1}{2}\end{cases}}}\)
\(2x^2-32=0\)
\(\Rightarrow2\left(x^2-16\right)=0\)
\(\Rightarrow2\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}}\)