Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: A= x^2 -4xy+5y^2-6y+20
<=>A=(x^2 -2.x.2y +4.y^2)+(y^2 -6y+9) +11
<=>A=(x-2y)^2 +(y-3)^2 +11
Mà (x-2y)^2 >=0 và (y-3)^2 >=0 nên A>=11
Dấu '=' xảy ra khi :(y-3)=0 và x-2y=0=> y=3 và x=6
Vậy GTNN của A là 11 khi x=6 ,y=3
Ta có : \(5x-x^2+13=-x^2+5x+13\)
\(=-\left(x^2-5x-13\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}-13\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{77}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\le\dfrac{77}{4}\) hay \(A\le0\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\))
Vậy Max A=\(\dfrac{77}{4}\) tại x=\(\dfrac{5}{2}\)
Lời giải:
\(A=x^2-5x+y^2+xy-4y+2017\)
\(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2017-A)=0\)
Vì pt xác định nên luôn có nghiệm. Tức là:
\(\Delta=(y-5)^2-4(y^2-4y+2017-A)\geq 0\)
\(\Leftrightarrow -3y^2+6y-8043+4A\geq 0\)
\(\Leftrightarrow 4A\geq 3y^2-6y+8043=3(y-1)^2+8040\geq 8040\)
\(\Rightarrow A\geq 2010\)
Vậy \(A_{\min}=2010\)