Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: m-2<0
=>m<2
2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)
\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)
\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)
\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)
\(\Leftrightarrow2m^2-6m+9-9m+18=0\)
=>2m^2-15m+27=0
hay \(m\in\varnothing\)
3: =>m=0
Pt đã cho có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-5\right)>0\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\3m+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>-\dfrac{1}{3}\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2\left(m-1\right)}{m}\\x_1x_2=\dfrac{m-5}{m}\end{matrix}\right.\)
\(x_1< x_2< 2\Rightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5}{m}+\dfrac{4\left(m-1\right)}{m}+4>0\\\dfrac{-2\left(m-1\right)}{m}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9m-9}{m}>0\\\dfrac{6m-2}{m}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>\dfrac{1}{3}\\m< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)
Kết hợp điều kiện ban đầu \(\Rightarrow\left[{}\begin{matrix}m>1\\-\dfrac{1}{3}< m< 0\end{matrix}\right.\)
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2
Để phương trình có hai nghiệm thì \(\Delta\ge0\)\(\Leftrightarrow m^2-4\ge0\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Theo định lý Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=1\end{matrix}\right.\).
Khi đó: \(A=\dfrac{\left(x_1-x_2\right)^2}{x_1+x_2-1}=\dfrac{\left(x_1+x_2\right)^2-4x_1x_2}{x_1+x_2-1}=\dfrac{\left(-m\right)^2-4.1}{-m-1}\)\(=-\dfrac{m^2-4}{m+1}\)\(=-\dfrac{m\left(m+1\right)-\left(m+1\right)-3}{m+1}\)\(=-m-1-\dfrac{3}{m+1}\).
Để A có giá trị nguyên thì \(m+1\inƯ\left(3\right)\) .
Suy ra \(m+1\in\left\{-1;1;-3;3\right\}\).
m + 1 = -1 thì m = - 2.
m + 1 = 1 thì m = 0. (loại).
m + 1 = -3 thì m = -4.
m + 1 = 3 thì m = 2.
Để phương trình có hai nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)^2-4.\left(m+1\right)\left(2m-2\right)\ge0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+9\ge0\\m\ne-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)^2\ge0\\m\ne1\end{matrix}\right.\)\(\Leftrightarrow m\ne1\).
Áp dụng định ly Viet:
\(x_1+x_2=-\dfrac{3m-1}{m+1}=3\)\(\Leftrightarrow3m-1=-3m-3\)\(\Leftrightarrow6m=-2\)\(\Leftrightarrow m=-\dfrac{1}{3}\).
Vậy \(m=-\dfrac{1}{3}\) là giá trị cần tìm.
ĐKXĐ: m<>-1
Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(m-2\right)\)
\(=\left(2m-2\right)^2-4\left(m^2-m-2\right)\)
\(=4m^2-8m+4-4m^2+4m-8\)
\(=-4m-4\)
Để phương trình có hai nghiệm phân biệt thì -4m-4>0
hay m<-1
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m-2}{m+1}\\x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\end{matrix}\right.\)
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)
\(\Leftrightarrow\left(\dfrac{2m-2}{m+1}\right)^2-6\cdot\dfrac{m-2}{m+1}=0\)
\(\Leftrightarrow\left(2m-2\right)^2-6\left(m^2-m-2\right)=0\)
\(\Leftrightarrow4m^2-8m+4-6m^2+6m+12=0\)
\(\Leftrightarrow-2m^2-2m+16=0\)
\(\Leftrightarrow m^2-m-8=0\)
Đến đây bạn tự giải nhé
PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(m-2\right)\left(m+1\right)\ge0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m+8\ge0\\ \Leftrightarrow12-4m\ge0\\ \Leftrightarrow m\le3\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)
\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-4\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=-4x_1x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2=-2x_1x_2\\ \Leftrightarrow\dfrac{4\left(m-1\right)^2}{\left(m+1\right)^2}=\dfrac{4-2m}{m+1}\\ \Leftrightarrow4\left(m-1\right)^2=\left(4-2m\right)^2\\ \Leftrightarrow4m^2-8m+4=16-16m+4m^2\\ \Leftrightarrow8m=12\Leftrightarrow m=\dfrac{3}{2}\left(tm\right)\)