Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1)
PT hoành độ giao điểm:
\(x^2-3x+5-(x+b)=0\)
\(\Leftrightarrow x^2-4x+(5-b)=0\)
Để 2 ĐTHS có một điểm chung thì pt hoành độ giao điểm có một nghiệm duy nhất
\(\Leftrightarrow \Delta'=2^2-(5-b)=0\)
\(\Leftrightarrow b=1\)
2)
\(M=|2x+3|+|x-1|\)
\(2M=2|2x+3|+|2x-2|=(|2x+3|+|2x-2|)+|2x+3|\)
\(=(|2x+3|+|2-2x|)+|2x+3|\)
\(\geq |2x+3+2-2x|+|2x+3|\)
\(\geq |3+2|+0=5\)
\(\Rightarrow M\geq \frac{5}{2}\). Vậy \(M_{\min}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (2x+3)(2-2x)\geq 0\\ 2x+3=0\end{matrix}\right.\Leftrightarrow x=-\frac{3}{2}\)
Ta cần chứng minh
\(x+\frac{27}{\left(x+3\right)^3}\ge1\)
\(\Leftrightarrow x+\frac{27}{\left(x+3\right)^3}-1\ge0\)
\(\Leftrightarrow x^4+8x^3+18x^2\ge0\)
Theo đề bài ta có: \(x\ge0\Rightarrow\left\{\begin{matrix}x^4\ge0\\8x^3\ge0\\18x^2\ge0\end{matrix}\right.\)
\(\Rightarrow x^4+8x^3+18x^2\ge0\)
Vậy ta có điều phải chứng minh. Dấu = xảy ra khi x = 0
2/ \(P=x+\frac{2}{2x+1}\)
\(\Leftrightarrow2P=2x+\frac{4}{2x+1}=2x+1+\frac{4}{2x+1}-1\)
\(\ge4-1=3\)
\(\Rightarrow P\ge\frac{3}{2}\)
Vậy GTNN là \(\frac{3}{2}\) đạt được khi x = \(\frac{1}{2}\)
Mình áp dụng luôn Cô - si cho các số ta được
a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)
b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)
g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)
P=\(\left\{\frac{2x+1}{x}\right\}^2\)+\(\left\{\frac{2y+1}{y}\right\}^2\)=\(\left\{2+\frac{1}{x}\right\}^2\)+\(\left\{2+\frac{1}{y}\right\}^2\) >= 2.\(\left\{2+\frac{1}{x}\right\}^{ }\)\(\left\{2+\frac{1}{y}\right\}^{ }\)
P>= 2.\(\left\{4+\frac{2}{x}+\frac{2}{y}+\frac{1}{xy}\right\}^{ }\)
P>=8 + 4\(\left\{\frac{1}{x}+\frac{1}{y}\right\}^{ }\) + \(\frac{2}{xy}\)
P>= 8 + 4.\(\left\{\frac{x+y}{xy}\right\}^{ }\)+\(\frac{2}{xy}\)
P>= 8+ \(\frac{4}{xy}\)+\(\frac{2}{xy}\)
P>= 8+ \(\frac{6}{xy}\)>= 8+ 6.\(\frac{4}{\left(x+y\right)^2}\)>= 8 + 6.4= 32
dấu = xảy ra khi x=y =\(\frac{1}{2}\)
1) Áp dụng BĐT Bunhiacopski
P = \(6\sqrt{x-1}+8\sqrt{3-x}\le\sqrt{\left(6^2+8^2\right)\left(x-1+3-x\right)}=10\sqrt{2}\)
Vậy Min P = \(10\sqrt{2}\) khi x = 43/25
2) a) \(\Rightarrow A-5=y-2x=4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\)
Áp dụng BĐT bunhiacopski
\(\Rightarrow\left(A-5\right)^2=\left(4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\right)^2\) \(\le\left(16y^2+36x^2\right)\left(\dfrac{1}{16}+\dfrac{1}{9}\right)=\dfrac{25}{16}\)
\(\Rightarrow-\dfrac{5}{4}\le A-5\le\dfrac{5}{4}\Rightarrow\dfrac{15}{4}\le A\le\dfrac{25}{4}\)
...........
b) tương tự
\(y=\left(2x^2+\frac{16}{x}+\frac{16}{x}\right)-\frac{27}{x}+1\ge24-\frac{27}{2}+1=\frac{23}{2}\)
Equelity iff \(x=2\)
Nyatmax nhầm r bạn ơi chỗ x+1 ở dưới mẫu