K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2x2 + y2 + 2xy - 6x - 2y + 10

= x2 + y2 + 12 + 2xy - 2x - 2y + x2 - 4x + 4 + 5

= (x + y - 1)2 + (x - 2)2 + 5 ≥≥ 5

Dấu ''='' xảy ra khi {x+y−1=0x−2=0{x+y−1=0x−2=0 ⇔{y=−1x=2⇔{y=−1x=2

Vậy Min = 5 khi x = 2 và y = - 1

Ta có: \(B=2x^2+y^2-2xy+6x+10\)

\(=x^2-2xy+y^2+x^2+6x+9+1\)

\(=\left(x-y\right)^2+\left(x+3\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=y=-3

Vậy: \(B_{min}=1\) khi (x,y)=(-3;-3)

3 tháng 2 2017

\(2x^2+y^2+2xy-6x-2y+10\)

\(=\left(x^2-4x+4\right)+\left(x^2+y^2+1+2xy-2y-2x\right)+5\)

\(=\left(x-2\right)^2+\left(x+y-1\right)^2+5\ge5\)

2 tháng 10 2018

a) \(A=x^2+6x+10\)

\(A=x^2+2\cdot x\cdot3+3^2+1\)

\(A=\left(x+3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

b) \(B=2x^2+y^2+2xy+4x+15\)

\(B=\left(x^2+2xy+y^2\right)+\left(x^2+2\cdot x\cdot2+2^2\right)+11\)

\(B=\left(x+y\right)^2+\left(x+2\right)^2+11\ge11\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2\\x=-2\end{cases}}\)

8 tháng 7 2017

GTNN là 2015 nha  bạn

8 tháng 7 2017

\(B=2x^2+y^2+2xy+6x+2y+2015\)

\(=x^2+y^2+1+2xy+2y+2x+x^2+4x+4+2011\)

\(=\left(x^2+y^2+1+2xy+2y+2x\right)+\left(x^2+4x+4\right)+2011\)

\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2011\)

Vì \(\left(x+y+1\right)^2+\left(x+2\right)^2\ge0\)nên \(\left(x+y+1\right)^2+\left(x+2\right)^2+2011\ge2011\)

Vậy \(MinB=2011\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

2 tháng 3 2017

\(P=2x^2+y^2+2xy-6x-2y+10\)

\(P=\left(x^2+y^2+1^2-2y-2x\right)+\left(x^2-4x+4\right)+5\)

\(P=\left(x+y-1\right)^2+\left(x-2\right)^2+5\)

\(\left\{{}\begin{matrix}\left(x+y-1\right)^2\ge0\\\left(x-2\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow P\ge5\) đẳng thức khi \(\left\{{}\begin{matrix}x-2=0\\x+y-1=0\end{matrix}\right.\) => x=2 và y=-1

2 tháng 3 2017

2x2 + y2 + 2xy - 6x - 2y + 10

= x2 + y2 + 12 + 2xy - 2x - 2y + x2 - 4x + 4 + 5

= (x + y - 1)2 + (x - 2)2 + 5 \(\ge\) 5

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x+y-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

Vậy Min = 5 khi x = 2 và y = - 1

18 tháng 10 2019

 P=2x2+y2-2xy-6x+2y+2024

=>2P=4x2+2y2-4xy-12x+4y+4048

=(2x-y-3)2+y2-2y+1+4038

=(2x-y-3)2+(y-1)2+4038> hoặc = 4038

Dấu = xảy ra <=>2x-y-3=0 và y-1=0=>x=2;y=1=>2p=4038=>p=2019

Vậy Pmin=2019<=>x=2;y=1

18 tháng 10 2019

Ta có: 

P = 2x2 + y2 - 2xy - 6x + 2y + 2024

P = (x2 - 2xy + y2) - 2(x - y) + 1 + (x2 - 4x + 4) + 2019

P = [(x - y)2 - 2(x - y) + 1] + (x - 2)2 + 2019

P = (x - y - 1)2 + (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x-1\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy MinP = 2019 <=> x = 2 và y = 1

27 tháng 12 2021

\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)

các anh chị pro toán giúp em

23 tháng 6 2017

a) \(2x^2+y^2+4x-2y-2xy+10\)

\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)

\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)

.......................chắc không phải cách làm này đâu!

b) \(5x^2+y^2+2xy-4x\)

\(=x^2+4x^2+y^2+2xy-4x\)

\(=\left(x^2+2xy+y^2\right)+x^2-4x\)

\(\left(x+y\right)^2+x^2-4x\)

20 tháng 3 2019

a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)

VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)