Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - 2xy + 6y^2 - 12x + 2y +45
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45
= (x - y - 6)^2 + 5y^2 - 10y + 9
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4
= (x - y - 6)^2 + 5.(y-1)^2 + 4
=>> MIN = 4 khi (x;y) = {(7;1)}
Vì |1,4 - x| > 0
=> -|1,4 - x| < 0
=> -|1,4 - x| - 2 < -2
=> A < -2
Dấu "=" xảy ra
<=> |1,4 - x| = 0
<=> 1,4 - x = 0
<=> x = 1,4
KL: Amax = -2 <=> x = 1,4
Vì |3,4 - x| > 0
=> 1,7 + |3,4 - x| > 1,7
=> D > 1,7
Dấu "=" xảy ra
<=> |3,4 - x| = 0
<=> 3,4 - x = 0
<=> x = 3,4
KL: Dmin = 1,7 <=> x = 3,4
Bài 1a)
\(P\left(x\right)=x^{2018}+4x^2+10\)
VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)
\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)
Hay \(P\left(x\right)\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Bài 1b)
\(M\left(x\right)=x^2+x+1\)
\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
a, A=15-|x+1|
Co: |x+1|> hoac = 0 voi moi x.
=>15-|x+1|< hoac = 15 vs moi x.
MAX A=15 khi |x+1|=0
=>x+1=0
x=-1.
b,Co: |x-2|> hoac bang 0.
=>18+|x-2|> hoac bang 18.
Min B=18 khi |x+2|=0
=>x+2=0
x=-2
Nho k cho mk nhe
A = (x^2-12x+36) - 2
= (x-6)^2 - 2
>= -2
Dấu "=" xảy ra <=> x-6=0 <=> x=6
Vậy GTNN của A = -2 <=> x=6
Tk mk nha
\(A=x^2-12x+18\)
\(A=x^2-2.x.6+36-36+18\)
\(A=\left(x-6\right)^2-18\)
Vì \(\left(x-6\right)^2\ge0\)
Nên \(\left(x-6\right)^2-18\ge-18\)
Vậy \(A_{MIN}=-18\Leftrightarrow x-6=0\Leftrightarrow x=6\)
Ta có : \(A=x^2-12x+18\)
\(=x^2-2.x.6+6^2-18\)
\(=\left(x-6\right)^2-18\)
Có : \(\left(x-6\right)^2\ge0\)
\(\Rightarrow\left(x-6\right)^2-18\ge-18\)
Dấu " = " xảy ra khi \(x-6=0\)
\(x=6\)
Vậy \(MIN_A=-18\) khi \(x=6\)