Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT⟺3x4−4x3=(1−√x2+1)(1+√x2+1+x2+1)PT⟺3x4−4x3=(1−x2+1)(1+x2+1+x2+1)
⟺3x4−4x3=−x21+√x2+1.(2+x2+√x2+1)⟺3x4−4x3=−x21+x2+1.(2+x2+x2+1)
⟺⎡⎣x=03x2−4x+2+x2+√x2+11+√x2+1=0⟺[x=03x2−4x+2+x2+x2+11+x2+1=0
Ta thấy 2+x2+√x2+11+√x2+1≥322+x2+x2+11+x2+1≥32
Cái này biến đổi tương đương.
Do đó 3x2−4x+2+x2+√x2+11+√x2+1≥3x2−4x+32>03x2−4x+2+x2+x2+11+x2+1≥3x2−4x+32>0 không thỏa mãn phương trình
Do đó phương trình ban đầu có nghiệm duy nhất x=0
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
Giải các phương trình, bất phương trình sau:
a,-4x+5>-2
b,(√3−2)3x< hoặc = 12
c,giá trị tuyệt đối của 2x+7 =3
a, -4x + 5 > -2
<=> -4x > -7
<=> x< 7/4