\(\sqrt{3x-2}+x^2-x\) = 2 <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

21 tháng 7 2021

ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\\frac{3x-2}{x+1}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-1\\\orbr{\begin{cases}x\ge\frac{3}{2}\\x\le-1\end{cases}}\end{cases}}}\)

Khi đó: \(\sqrt{\frac{3x-2}{x+1}}=3\)

\(\Leftrightarrow\frac{3x-2}{x+1}=9\)

\(\Leftrightarrow9x+9=3x-2\)

\(\Leftrightarrow6x=-11\)

\(\Leftrightarrow x=\frac{-11}{6}\)(T/m ĐKXĐ)

21 tháng 7 2021

ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\x\ge\frac{3}{2}hoặcx\le-1\end{cases}}\)

17 tháng 7 2017

điêu sai rồi

17 tháng 7 2017

x = -3 nha bạn

a)

5x2−3x=0⇔x(5x−3)=05x2−3x=0⇔x(5x−3)=0

⇔ x = 0 hoặc 5x – 3 =0

⇔ x = 0 hoặc x=35.x=35. Vậy phương trình có hai nghiệm: x1=0;x2=35x1=0;x2=35

Δ=(−3)2−4.5.0=9>0√Δ=√9=3x1=3+32.5=610=35x2=3−32.5=010=0Δ=(−3)2−4.5.0=9>0Δ=9=3x1=3+32.5=610=35x2=3−32.5=010=0

b)

3√5x2+6x=0⇔3x(√5x+2)=035x2+6x=0⇔3x(5x+2)=0

⇔ x = 0 hoặc √5x+2=05x+2=0

⇔ x = 0 hoặc x=−2√55x=−255

Vậy phương trình có hai nghiệm: x1=0;x2=−2√55x1=0;x2=−255

Δ=62−4.3√5.0=36>0√Δ=√36=6x1=−6+62.3√5=06√5=0x2=−6−62.3√5=−126√5=−2√55Δ=62−4.35.0=36>0Δ=36=6x1=−6+62.35=065=0x2=−6−62.35=−1265=−255

c)

2x2+7x=0⇔x(2x+7)=02x2+7x=0⇔x(2x+7)=0

⇔ x = 0 hoặc 2x + 7 = 0

⇔ x = 0 hoặc x=−72x=−72

Vậy phương trình có hai nghiệm: x1=0;x2=−72x1=0;x2=−72

Δ=72−4.2.0=49>0√Δ=√49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72Δ=72−4.2.0=49>0Δ=49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72

d)

2x2−√2x=0⇔x(2x−√2)=02x2−2x=0⇔x(2x−2)=0

⇔ x = 0 hoặc 2x−√2=02x−2=0

⇔ x = 0 hoặc x=√22x=22

Δ=(−√2)2−4.2.0=2>0√Δ=√2x1=√2+√22.2=2√24=√22x2=√2−√22.2=04=0

15 tháng 9 2017

ĐK: \(\hept{\begin{cases}x-5\ge0\\x-4-2\sqrt{x-5}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\\left(\sqrt{x-5}-1\right)^2\ge0\end{cases}}\Leftrightarrow x\ge5\)

\(\sqrt{36\left(x-4-2\sqrt{x-5}\right)}-18=0\)

\(\Leftrightarrow\sqrt{36\left(x-4-2\sqrt{x-5}\right)}=18\)

\(\Leftrightarrow\left(x-4-2\sqrt{x-5}\right)=9\)

\(\Leftrightarrow\left(\sqrt{x-5}-1\right)^2=9\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}-1=3\\\sqrt{x-5}-1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}=4\left(tm\right)\\\sqrt{x-5}=-2\left(l\right)\end{cases}}\Leftrightarrow x=21\left(tm\right)\)